

Version: 2.2d Page 1

STANDARD
BUSINESS

REPORTING

SBR CORE WEB SERVICES
IMPLEMENTATION GUIDE (WIG)

V2.2d

Purpose: This document provides advice to software developers in the
implementation of calls to SBR Core Services.

Date: 10 February 2016

Contact: For further information or questions, contact the SBR Program Office at

SBRServiceDesk@sbr.gov.au or call 1300 488 231

mailto:sbr@treasury.gov.au

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 2

DOCUMENT CHANGE CONTROL

Version

number

Date of

issue
Author(s) Brief description of change

1.0 01/05/2009 Michael

Leditschke

Initial Release

2.0 17/08/2009 Michael

Leditschke

Update to reflect V2.0 WSDLs and 2010 Security Design

2.1 31/08/2009 Michael

Leditschke

1. Add Commonwealth copyright notice and logo.

2. Correct errors in element names as compared to the

WSDL schemas and add a paragraph flagging that

the schemas take precedence over the WIG. Also

include a reference to the specific version of the

WSDLs to which this document applies.

3. Correct minor typographical errors.

4. Add four additional optional claims that should be

included in STS requests, correct the description of

the stalecrlminutes claim, rearrange the order of the

claims in the table to list mandatory claims first,

heading for device certificate in claims table should

be ABR_Device not ABS_Device, refine the

descriptive text in relation to optionality of claims,

align examples to the claims table.

5. givennames, surname, emailaddress and

credentialadministrator claims are now mandatory for

user certificates.

6. Add additional information on testing – network

connectivity testing, SBDM testing.

7. Add a table of end points (URLs) at which services

are available to software developers. This includes

both Core Services and the VANguard STS.

8. Add SOAP fault codes for use with the SBDM testing,

to identify use of unsupported attachment

mechanisms and to indicate the XML of the request

is malformed. Update the malformed XML example to

use this new fault code.

9. Correct the SOAP envelope Structure diagram to

show 0 or more, not 1 or more, attachments.

10. Finalise designation text table.

11. Add a comment clarifying that the message

connectivity test is subject to agency limits on the

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 3

Version

number

Date of

issue
Author(s) Brief description of change

maximum number of XBRL instances and binary

attachments.

12. Add a clarification indicating how content that is

dynamically inserted by agencies into error

messages, but becomes part of the static text of the

message, is indicated in sample message lists.

13. Complete a missing paragraph in section 4.6.1.3.

14. Update the information on error description

parameters to reflect the final decisions to use

named rather than indexed parameters and only

support error messages in English. (These changes

were inadvertently not included when the error

framework was incorporated into V2.0d of the WIG

from an internal SBR document)

15. Add a clarification indicating the acceptable

encodings that can be used in Web Service calls.

16. Use the terms ”reporting obligations”, “business

collaborations” and “report message” to align with the

terminology used in the Taxonomy Architecture.

17. Add information in regard to available WS-Policy

files.

18. Add a clarification indicating the value of the

Message.Type.Text to be used in responses to

requests where the Message.Type.Text value is not

recognised by the receiving agency.

19. Add a clarification indicating the format of the URLs

to be used in business document validation URIs

20. Remove references to the timestamp service, which

is no longer required

21. Update the description of the STS service to cover

the use of SSL rather than message level encryption.

22. Update the description of the isEditable and isVisible

attributes to indicate that they should be namespace

qualified, rather than being unqualified.

2.2 31/05/2010 Michael

Leditschke

1. Updated use of terms such as MUST, SHOULD and

MAY in this document in line with RFC 2119. In some

cases, this will result in a change of wording to reflect

the author’s original intent.

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 4

Version

number

Date of

issue
Author(s) Brief description of change

2. Added the following fault codes

SBR.GEN.FAULT.SOFTWAREBLOCKED

SBR.GEN.FAULT.SOFTWARENOTREGISTERED

SBR.GEN.FAULT.INVALIDSBDM

SBR.GEN.FAULT.UNKNOWNMESSAGETYPETEXT

SBR.GEN.FAULT.UNKNOWNVALIDATIONURI

SBR.GEN.FAULT.INVALIDTOKENSIGNATURE

23. Clarified from where the reason text should be

derived in a fault returned to client software as a

result of a fault being generated by an agency

24. Clarified the expected handling by Core Services of

env:Sender vs env:Receiver faults generated by

agencies

25. Clarified the need for clock synchronisation when

using the Security Token Service

26. Documented the handling of fault “Node” element

values for env:Receiver faults generated by agencies

27. Documented the error information that may be

received from the Security Token Service

28. Added additional clarification in regards to message

connectivity testing

29. Added additional clarification in regards to the

addition of timestamps to messages

30. Added additional clarification in regards to the values

to be provided as part of the SoftwareInformation,

and its use as part of software self-certificaiton

processes

31. Minor grammatical and spelling corrections

32. Provided guidance on a range of items associated

with XBRL instance creation, including element

ordering, meaning of IDs on contexts and units,

provision of accuracy information and the handling of

monetary units

33. Replace references to the SBR credential with

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 5

Version

number

Date of

issue
Author(s) Brief description of change

“AUSkey”

34. Clarify the interpretation of EventItem severity for

XBRL payload formats that support multiple

lodgements in a single request, such as PAYG

summaries and TFN declarations.

2.2.d 10/01/2016 Vitaly Sidorenko 1. Updated the SBR contact email address, approving

authority and copyright statement.

2. Updated the definition of existing services as

authenticated and to add anonymous endpoints to

them.

3. Replaced the term “SBR” to “SBR Core Services”

when it is applicable to the SBR Core Services

platform to distinguish it from SBR ebMS3.

4. Removed references to Knowledge Repository.

5. Updated implementation options to include sample

applications and C platform.

6. Added the following soap fault codes:

 SBR.GEN.FAULT.MISMATCHEDPAYLOADS

 SBR.GEN.FAULT.UNSUPPORTEDPAYLOAD

 SBR.GEN.FAULT.UNKNOWNPAYLOADTYPE

7. Updated the description of the following soap faults

to replace “XBRL” word with the “payload” word:

 SBR.GEN.FAULT.TOOMANYINSTANCES

 SBR.GEN.FAULT.TOOMANYDOCUMENTS

8. Removed the soap fault

SBR.GEN.FAULT.WSSECURITYNOTPERMITTED

as not supported.

9. Added XML as a new supported payload type.

10. Updated description of checking for

Message.Type.Text values in SBR Core Services.

11. Updated Figure 8 to reflect change in the soap Fault

Reason.Text value.

12. Updated Table 24 to reflect changes in endpoints

related to decommission of Test SBDM service and

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 6

Version

number

Date of

issue
Author(s) Brief description of change

introduction of anonymous endpoints.

13. Removed section 2.2.2.1. WS-Policy as not

applicable.

14. Updated Table 25 to reflect current Vanguard

endpoints.

DOCUMENT APPROVALS

This document was approved by:

Name Title Date

Neil Tothill Senior Director Solution Architecture &

Integration

10/02/2016

COPYRIGHT

© Commonwealth of Australia 2016 (see exceptions below).

This work is copyright. Use of this Information and Material is subject to the terms and conditions in
the "SBR Disclaimer and Conditions of Use" which is available at http://www.sbr.gov.au. You must
ensure that you comply with those terms and conditions. In particular, those terms and conditions
include disclaimers and limitations on the liability of the Commonwealth and an indemnity from you to
the Commonwealth and its personnel, the SBR Agencies and their personnel.

You must include this copyright notice in all copies of this Information and Material which you create.
If you modify, adapt or prepare derivative works of the Information and Material, the notice must still
be included but you must add your own copyright statement to your modification, adaptation or
derivative work which makes clear the nature of your modification, adaptation or derivative work and
you must include an acknowledgement that the adaptation, modification or derivative work is based on
Commonwealth or SBR Agency owned Information and Material.

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 7

TABLE OF CONTENTS

1. INTRODUCTION ... 12

1.1. Purpose ..12

1.2. Audience ..12

1.3. Context ...12

1.4. Terminology ..14

1.5. Namespaces ..14

2. SBR CORE SERVICES ARCHITECTURE ... 16

2.1. Overview ..16

2.2. Web Services ...17
2.2.1. Services Offered ...17
2.2.2. Web Service Standards ..18
2.2.3. Common Characteristics ..19
2.2.4. List Service ...20
2.2.5. Prefill Service ..20
2.2.6. Prelodge Service...21
2.2.7. Lodge Service ...21

2.3. Message Implementation Guides (MIG) ..22

3. MESSAGE STRUCTURE .. 23

3.1. Overview ..23

3.2. SOAP Header ...24
3.2.1. Security Element ...24
3.2.2. NonRepudiation Element ..24

3.3. SOAP Body ..24
3.3.1. Top Level Wrapper Elements ...24
3.3.2. Standard Business Document Message (SBDM) ...24
3.3.3. Standard Business Document Header (SBDH) ..25
3.3.3.1. Checking of Message.Type.Text values ...26
3.3.3.2. MessageTimestamps ..26
3.3.3.3. Sender and Receiver ..27
3.3.3.4. LodgementReceipt ..28
3.3.3.5. SoftwareInformation ..29
3.3.3.6. BusinessDocuments ...31
3.3.3.7. MessageEvent ..33
3.3.4. Standard Business Document Body (SBDB) ..33
3.3.4.1. BusinessDocumentInstance ...34
3.3.4.2. AttachmentInstance ..34

3.4. SOAP Faults ...35

3.5. Dates and Times ..35

3.6. Timeout Values ..35

3.7. XBRL Instances ..36
3.7.1. Ordering of Context, Unit and Fact Elements ...36
3.7.2. Semantic Meaning of Context IDs and Unit IDs ...36
3.7.3. Redundant Contexts ...36
3.7.4. Namespace Prefixes Used On Elements ...36
3.7.5. Namespace Prefixes Used in Context Element Dimension Definitions37
3.7.6. Monetary Units ..37
3.7.7. Measurement Accuracy ..37
3.7.8. XBRL Element Attributes ..38

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 8

3.8. XML Instances ..38

4. ERROR MANAGEMENT... 39
4.1. Overview ..39

4.2. Context ...39

4.3. High Level Categorisation of Error Conditions ...42

4.4. Principles ..43
4.4.1. P.01 Provide certainty as to the action to be taken in regard to an error43
4.4.2. P.02 Provide sufficient detail to allow appropriate action to be taken43
4.4.3. P.03 Provide consistency in the errors to be handled ..44

4.5. Transport Exceptions ...44
4.5.1. SOAP Processing Model ..44
4.5.2. Use of SOAP Fault fields ..46
4.5.2.1. Code Element ...46
4.5.2.2. Subcode Element..46
4.5.2.3. Reason Element ...47
4.5.2.4. Node Element ...47
4.5.2.5. Role Element ..47
4.5.2.6. Detail Element ...47
4.5.3. Exception Conditions ..47
4.5.3.1. Client software errors ..48
4.5.3.2. SBR Core Services unavailability ...55
4.5.3.3. SBR Core Services internal errors ..57
4.5.3.4. Agency internal errors ...59

4.6. Message Events ...61
4.6.1. Use of event item fields ..61
4.6.1.1. Error Code ..61
4.6.1.2. Severity Code ...62
4.6.1.3. Descriptions ..62
4.6.1.4. Locations ...63
4.6.2. Providing Codes and Descriptions To Software Developers ..65
4.6.2.1. Collection of Agency Code Lists and Code Usage ...65
4.6.2.2. SBR Common Response Messages ..65
4.6.2.3. Code List Format for Software Developers ..65

4.7. Error Coding Example ..67

5. SECURITY ... 68

5.1. Overview ..68

5.2. Implementation Options ...69

5.3. Security Token Service (STS) ..69
5.3.1. Creating the STS Request ..72
5.3.2. Processing the STS Response ...74
5.3.3. STS Faults ..76
5.3.3.1. BusinessContext Element ...76
5.3.3.2. EventCode Element ..77
5.3.3.3. EventSeverity Element ...77
5.3.3.4. EventDescription Element ..77
5.3.3.5. UserAdvice ..77

5.4. Secure Messaging ..81

5.5. Signature Structures...82
5.5.1. Identity Token <saml2:EncryptedAssertion> ..85
5.5.2. Business Certificate <wsse:BinarySecurityToken> ..86
5.5.3. Document Signature <ds:Signature id=”signed_sbdm_id”> ...86
5.5.4. Envelope Signature <ds:Signature> ...86

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 9

6. TESTING ... 87

6.1. Overview ..87
6.1.1. Service End Points..87

6.2. Network Connectivity Testing ...89

6.3. Message Connectivity Testing ...89
6.3.1. Overview ...89
6.3.2. Scenario ..90
6.3.3. message.ping ..90
6.3.4. message.pong ..91

6.4. Report Testing ..92

7. SUPPORTING FILES ... 93

7.1. Overview ..93

8. PLATFORM SPECIFICS ... 94
8.1. Overview ..94

8.2. .NET ...94

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 10

TABLE OF FIGURES

Figure 1: SBR Core Services Solution Artefacts .. 13

Figure 2: SBR Core Services High Level Platform Overview .. 16

Figure 3: SBR Core Services SOAP Envelope Structure ... 23

Figure 4: Sources of Errors In SBR Core Services platform ... 41

Figure 5: SOAP Fault Processing ... 45

Figure 6: SOAP Fault indicating XML is not well formed ... 52

Figure 7: SOAP Fault indicating XML schema validation failure .. 52

Figure 8: SOAP Fault indicating too many payload instances.. 52

Figure 9: SOAP Fault indicating a missing security token .. 53

Figure 10: SOAP Fault indicating an invalid security token (production) 54

Figure 11: SOAP Fault indicating an invalid security token (test) .. 54

Figure 12: SOAP Fault indicating an invalid digital signature (production) 54

Figure 13: SOAP Fault indicating an invalid digital signature (test) .. 55

Figure 14: SOAP Fault indicating unknown agency or service not supported by an agency . 55

Figure 15: SOAP Fault indicating agency is unavailable ... 57

Figure 16: SOAP Fault indicating agency processing system is unavailable 57

Figure 17: SOAP Fault indicating invalid XML from an agency .. 59

Figure 18: SOAP Fault indicating an agency internal error ... 60

Figure 19: Minimal MessageEvent indicating success of the request 62

Figure 20: MessageEvent indicating an ABN in the input was invalid 65

Figure 21: Security Interactions ... 68

Figure 22: STS Request and Response Envelopes .. 70

Figure 23: Token.Request Sample Message ... 73

Figure 24: Token.Response .. 76

Figure 25: SOAP Fault indicating presentation of an expired credential to the STS 80

Figure 26: SBR Core Services Secure Messaging ... 81

Figure 27: Sample Security Header .. 85

Figure 28: Message Ping ... 90

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 11

TABLE OF TABLES

TABLE 1: NAMESPACE PREFIXES ... 15

TABLE 2: TECHNICAL WEB SERVICES OFFERED BY SBR CORE SERVICES 17

TABLE 3: RECOMMENDATIONS USED BY SBR CORE SERVICES .. 18

TABLE 4: SOAP BODY CHILD ELEMENTS ... 24

TABLE 5: STANDARD BUSINESS DOCUMENT MESSAGE CONTENT MODEL 25

TABLE 6: STANDARD BUSINESS DOCUMENT HEADER CONTENT MODEL 26

TABLE 7: MESSAGE TIMESTAMP CONTENT MODEL ... 27

TABLE 8: SENDER AND RECEIVER CONTENT MODEL ... 28

TABLE 9: DESIGNATION TEXT VALUES FOR SBR CORE SERVICES AGENCIES 28

TABLE 10: LODGEMENT RECEIPT CONTENT MODEL ... 29

TABLE 11: SOFTWARE INFORMATION CONTENT MODEL ... 29

TABLE 12: BUSINESS DOCUMENT CONTENT MODEL .. 32

TABLE 13: MESSAGE ATTACHMENT CONTENT MODEL ... 33

TABLE 14: STANDARD BUSINESS DOCUMENT BODY CONTENT MODEL 33

TABLE 15: BUSINESS DOCUMENT INSTANCE CONTENT MODEL ... 34

TABLE 16: ATTACHMENT INSTANCE CONTENT MODEL ... 34

TABLE 17: SOAP FAULT NODE ELEMENT URI VALUES .. 47

TABLE 18: SOAP FAULT SUBCODES FOR CLIENT SOFTWARE ERRORS 51

TABLE 19: SOAP FAULT SECURITY SUBCODES (TEST ENVIRONMENTS ONLY) 52

TABLE 20: SOAP FAULT SUBCODES FOR SBR CORE SERVICES UNAVAILABILITY 56

TABLE 21: SOAP FAULT SUBCODES FOR SBR CORE SERVICES INTERNAL ERRORS 59

TABLE 22: STS CLAIMS ... 72

TABLE 23: STS FAULT CODES ... 79

TABLE 24: SERVICE END POINTS PROVIDED BY CORE SERVICES 88

TABLE 25: SERVICE END POINTS PROVIDED BY VANGUARD .. 89

TABLE 26: SPECIFIC SBDM VALUES FOR MESSAGE.PING .. 91

TABLE 27: SPECIFIC SBDM VALUES FOR MESSAGE.PONG... 91

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 12

1. INTRODUCTION

1.1. PURPOSE

The purpose of this document is to provide the information that will assist Software Developers in the

implementation of calls to the web services offered by SBR Core Services.

1.2. AUDIENCE

The audience for this document is any organisation that will be building SBR Core web services into

their products. Typically this will be software application developers.

Readers should be familiar with the following:

• SBR Program – please see www.sbr.gov.au for further information.

• XBRL – please see www.xbrl.org for further information.

• XML – please see www.xml.org for further information.

• Web Services – please see www.ws-i.org for further information.

1.3. CONTEXT

The SBR program offers a suite of documents and technical products to support software developers.

These are illustrated in Figure 1. Broadly speaking there are three groups of products:

• Architectural reference information such as the solution overview and taxonomy architecture that

aim to explain what SBR is and how it works.

• Report specific implementation guides that provide the entry point for detailed information about

how to implement specific business services such as an Activity Statement.

• General support material such as software development kits and conformance test suites that

aim to facilitate efficient implementation.

SBR Solution Overview

An overview of the SBR solution, including the business areas (agencies and forms) in scope and the

main components of the solution, may be obtained from the SBR web site.

Taxonomy Architecture

This document describes the architecture of the SBR XBRL Taxonomy and shows how the library of

harmonised data elements (the “SBR AU Taxonomy”) is packaged and how the data elements are re-

used across government forms (the “SBR AU Reports”). The document also defines the data element

naming conventions, namespace conventions, file naming conventions, version control processes and

provides a decision tree that defines the rules for choosing between different taxonomy

implementation options.

http://www.sbr.gov.au/
http://www.xbrl.org/
http://www.xml.org/
http://www.ws-i.org/
http://www.sbr.gov.au/

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 13

Figure 1: SBR Core Services Solution Artefacts

SBR XBRL Taxonomy

This is the collection of XML schema and XML linkbases that constitute the SBR XBRL taxonomy.

The “SBR AU Taxonomy” is organised into classifications representing the general functions of

government and includes schema files and reference linkbases. The “SBR AU Reports” are organised

by agency / report and includes schema files, presentation, definition, label, and calculation linkbases

as necessary. SBR AU Report files are always built from data elements in the SBR AU Taxonomy.

SBR Core Services Web Service Implementation Guide (WIG)

This document describes common technical components and services that are re-used by all business

services when using SBR Core Services platform. The common services include a single gateway

that exposes four web services and supports industry standard web service protocols for message

exchange, a standard business document message, a security token service, and a standardised

approach to handling business error conditions and transport exceptions.

Web Services

The “Web Services Description Language” (WSDL) is the W3C standard syntax for the definition of

web services. A WSDL describes the service, the information exchanged, and the technical protocols

used for the exchange. SBR Core Services provides “list”, “pre-fill”, “pre-lodge” and “lodge” web

services together with a WSDL for each. This collection also includes the XML Schema for the SBR

Standard Business Document Message (SBDM) which is a mandatory part of every message.

Message Implementation Guide (MIG)

There is a MIG for each report in scope for SBR. The MIG is the entry point for an implementer

wishing to support a specific SBR reporting obligation (e.g. Activity Statement or Payroll Tax). In

many cases there are several message exchanges around a specific report (e.g. “list” previous

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 14

lodgements, “pre-fill” with government data, “calculate” an obligation, and “lodge” a report). The MIG

provides a business collaboration model, message content, and business rules for each requesting /

responding message that supports the implementation of a reporting obligation.

Points in this document where the reader needs to refer to the MIG for report specific information are

shown thus “Message Implementation Guide”.

Identity Management

The SBR solution leverages the AUSkey authentication credential that will be accepted by all

participating agencies. This document explains how the credential is issued and managed. It also

explains how it is linked to agency business services to authorise primary credential holders or their

delegates (employees or intermediaries).

Software Developer Kit (SDK)

There are some common technical components that the SBR program expects will be needed by all

implementers. The SDK is a set of components created for Java, .NET and C platforms that are

available for software developers to use in their products. Details of the SDK are provided on the SBR

Web Site.

Testing

The SBR program will provide implementers with a suite of test services that can be used to test both

the technical (web service) and business (e.g. activity statement) implementations. Supporting the test

services is a library of test credentials, Australian Business Numbers (ABN) and test data that can be

assigned to developers and will be recognised by agencies.

1.4. TERMINOLOGY

For definition of the terminology and acronyms used within this document, please refer to the

glossary on the SBR website.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD

NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as

described in RFC 2119. The use of the word “Mandatory” is to be read as “MUST”.

1.5. NAMESPACES

For brevity, namespace definitions are not included in all examples. The appearance of the following

namespace prefixes SHALL be understood to refer to the corresponding namespaces from the table

below.

PREFIX NAMESPACE

env http://www.w3.org/2003/05/soap-envelope

list http://sbr.gov.au/list.02.service

prefill http://sbr.gov.au/prefill.02.service

prelodge http://sbr.gov.au/prelodge.02.service

http://www.sbr.gov.au/software-developers/developer-tools/glossary
http://www.ietf.org/rfc/rfc2119.txt
http://www.w3.org/2003/05/soap-envelope
http://sbr.gov.au/list.02.service

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 15

lodge http://sbr.gov.au/lodge.02.service

sbdm http://sbr.gov.au/comn/sbdm.02.data

core http://sbr.gov.au/comn/core.02.data

sbr http://sbr.gov.au/comn/core.02.data

xmime http://www.w3.org/2005/05/xmlmime

xsi http://www.w3.org/2001/XMLSchema-instance

wsse http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd

wst http://docs.oasis-open.org/ws-sx/ws-trust/200512

iso4217 http://www.xbrl.org/2003/iso4217

Table 1: Namespace Prefixes

http://sbr.gov.au/comn/core.02.data
http://sbr.gov.au/comn/core.02.data

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 16

2. SBR CORE SERVICES ARCHITECTURE

2.1. OVERVIEW

The following diagram illustrates, at a high level, the design time and run time environment of the end-

to-end SBR Core Services platform.

Figure 2: SBR Core Services High Level Platform Overview

SBR Core Services (CS) mediates machine-to-machine interactions between Business and SBR

participating Government Agencies via CS (a B2G style of interaction).

The primary responsibility of the SBR CS is to seamlessly and securely mediate between business

service requests and agencies. Whenever a business makes an SBR web service request, SBR CS

will receive it and perform:

1) Authentication – ensure the message is appropriately secured and contains the necessary identity

information to confirm it has come from a known entity,

2) Message structure validation,

3) Route to the designated Agency,

Design Time

SBR Supplied Products

Run Time Environment

Business or

Intermediary
COMPUTER INSTALLED WITH “SBR

COMPATIBLE” SOFTWARE

PACKAGE

Message

Agency

SBR

CORE SERVICES

O
R

C
H

E
S

T
R

A
T

IO
N

S
e

c
u

ri
ty

 S
o

lu
ti

o
n

BC

OA
TA

XO

NO

MY

Message

SBR

Discoverable

Taxonomy

Set

Software

Developers

MessageMessage

SBR

Support

Validation

RulesSBDM.XSD

List Service

Pre-Fill Service

Pre-Lodge Service

Lodge Service

WSDLs

WSDLs
WSDLs

WSDLs

Web Service

Implementation

Guide

 Message

Implementation

Guide

 Message

Implementation

Guide

 Message

Implementation

Guide

 Message

Implementation

Guide

 Message

Implementation

Guide

(ATO, ASIC, State

 Revenue Offices)

VANguard

Secure Token Service

Security

Token

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 17

4) Wait for a response, and then hand the response back to the business.

2.2. WEB SERVICES

2.2.1. Services Offered

SBR Core Services exposes the following four technical services for use by business or government

software. The degree to which each service is used as part of completion of a particular reporting

obligation varies, with not all services necessarily being involved for every obligation.

SERVICE ROLE

List Report Allows businesses to retrieve list-based data (such as obligations to

be fulfilled or summaries of previous lodgements).

Pre-fill Report Allows businesses to retrieve information known to the agency

responsible for a report

Pre-Lodge Report Allows a business to perform a “pre-lodgement” call – this performs

functions such as providing the results of complex agency

calculations or checking the validity of information prior to lodgement,

depending on the business scenario.

Lodge Report Allows a business to lodge a report to an agency.

Table 2: Technical Web Services Offered By SBR Core Services

Every service provides secured (authenticated) and non-secured (anonymous) endpoints. Non-

secured endpoints are allowed in Core Services on the per agency basis when an Agency decides

that this is required.

Subsequent sections provide further information in regards to each service.

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 18

2.2.2. Web Service Standards

SBR CS SHALL conform to the SOAP 1.2 recommendation provided by the World Wide Web

consortium, and SHALL employ a range of related recommendations generically referred to as the

“WS*” suite. Table 3 below indicates the key recommendations that SHALL be employed by SBR CS.

Please note that messages sent to anonymous endpoints SHOULD NOT contain SAML token as for

authenticated services.

CATEGORY APPLICABLE RECOMMENDATIONS

Transport HTTP 1.1

HTTP over TLS (With constraints as per ACSI 33)

Messaging RFC2392: Content-ID and Message-ID Uniform Resource Locators

SOAP 1.2

MTOM 1.0

Description WSDL 1.1

WSDL 1.1 Section 3.0

WSDL 1.1 Section 5.0

Namespaces in XML [World Wide Web Consortium 14-January-

1999]

XML 1.0 (Second Edition)

XML Schema Part 1: Structures

XML Schema Part 2: Datatypes

Security TLS 1.0

HTTP over TLS

RFC2459: Internet X.509 Public Key Infrastructure Certificate and

CRL Profile

WS-Security: SOAP Message Security 1.1 (WS-Security 2004)

OASIS Standard Specification, 1 February 2006

Web Services Security: X.509 Certificate Token Profile 1.1 OASIS

Standard Specification, 1 February 2006

Web Services Security: SAML Token Profile 1.1 OASIS Standard

Specification, 1 February 2006

XML Encryption Syntax and Processing

XML Signature Syntax and Processing

Table 3: Recommendations used by SBR Core Services

1. WSDLs will contain the policy definition to enable MTOM as an example of how to add policies

to the WSDLs, but this will be commented out to ensure utility of WSDLs without alteration.

There is a high level of consistency in regards to the MTOM policy assertions across platforms.

2. Additional platform specific policies will be provided in separate files for integration as desired

by developers, based on the pattern of the MTOM policy.

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 19

This allows developers to select the degree to which they wish to understand and leverage the

WS-Policy support within their platform.

3. The portfolio of policies will be organically grown based on use and testing of policies on

specific platforms by agencies and software developers.

In order to facilitate re-use of artefacts across the developer community, additional examples

will be made available as and when they become available to the program.

2.2.3. Common Characteristics

All web services supported via SBR Core Services platform have the following common

characteristics:

• Use of a request/response style of interaction

With the exception of communication timeouts, any request SHALL always receive a response.

All requests SHALL be initiated by business software.

• Synchronous calls

All web service calls to SBR Core Services MUST be synchronous in nature. While most

responses will be received within seconds, business software SHOULD be designed to cater for

delays of the order of minutes. It is thus RECOMMENDED that the process of interacting with

SBR Core Services be decoupled from the user interaction with the package.

• Separation of web service intent from business intent

The web services offered are “generic”, in that the way in which the message payload structure

is expressed only constrains business documents to be provided in well-formed XML, and

attachments to be any binary object. This may be contrasted with the approach where the web

service contract includes the structure of the business documents.

The advantage of this approach is that the web services infrastructure is not affected as new

reporting obligations (and hence document formats) are added to the portfolio of reporting

obligations covered by SBR.

• Business Documents represented in one of supported payload format (currently XBRL or XML

but new types can be supported in the future)

The business data associated with a request, and the resulting business data provided by the

government in any response, MUST be represented in the same payload format used for the

request payload. The XBRL business document formats are defined by the SBR AU Reports,

with details of message content, optionality and rules being described in a Message

Implementation Guides for corresponding business interactions (see section 2.3). Non-XBRL

payloads should be compliant with appropriate schemas.

• A single security approach

All requests SHALL be secured in the same way across all services. Where security related

information is returned in a response, a standard approach is also employed.

• A single mechanism to indicate the success of a request.

All responses MUST employ a standard mechanism to indicate the success of a request.

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 20

If the request is successful, any business level response data MUST be returned as one or

more payload instance documents optionally with attachments.

• A standardised approach to the indication of failure conditions

Failures related to the transport of SOAP messages SHOULD be indicated using SOAP Faults,

while business level errors MUST be represented in a standard format within the response

message (see section 4 for more details). If the request is unsuccessful, any business

information, for example documents or attachments, in the response SHOULD be ignored.

• A single end-point per service regardless of agency

As suggested by figure 2, SBR Core Services provides a single physical end point address for

each service for each environment offered (production, end-to-end testing).

A standard field within the message structure is used to determine to which agency a request

MUST be forwarded. Beyond this field, business software does not require any knowledge of

the mechanisms needed to communicate with the agencies involved in SBR CS. Thus new

agencies MAY be added to SBR CS without the need to retest the web services infrastructure of

business software.

• Request sizes are limited

Business documents have been designed to ensure that requests to agencies are constrained

within size limits. Such limits are described in the Message Implementation Guide (see section

2.3).

In some circumstances, particularly where requests have been batched together, this will

require business software to issue multiple requests for what is logically a single submission, an

example being the submission of multiple Tax File Number Declarations or PAYG Summaries

for a single company.

Software developers are encouraged to consider whether multiple smaller requests can be

made in real-time rather than the more traditional batch approach.

2.2.4. List Service

This service can be used by a business or reporting intermediary wishing to determine what

reporting obligations they have from a particular agency, or to retrieve a summary list of

previously submitted reports and their outcomes / totals for use in formulating another report –

for example an end-of-year submission.

The caller provides search criteria in the payload instance contained in the request which is

tailored to the particular type of reporting obligation and is defined by the agencies.

2.2.5. Prefill Service

Some reports supported by SBR allow businesses / authorised intermediaries to retrieve “pre-

fill” data from the agency. Pre-fill data populates sections of the report with business specific

information known by the agency, rather than the business / authorised intermediary needing to

provide the information.

Other reports require pre-fill data as a pre-condition to report lodgement. An example of such a

report is the “Business Activity Statement (BAS)”. A pre-condition for lodging this report to the

Australian Taxation Office (ATO) is that a business / authorised intermediary would load this

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 21

report in its accounting software package with applicable pre-populated data from ATO prior to

completing the report and then lodging it to ATO.

A business / authorised intermediary would use this service to retrieve single or multiple

report(s) with applicable pre-populated data and optional single or multiple attachments (if

applicable) for a specified reporting period from an agency.

Pre-fill data SHALL be requested for a single report period (where a reporting obligation period

can also include a one-off or point-in time reporting obligation). Typically this will result in one

pre-filled report instance being returned. In some scenarios there MAY be more than one

reporting obligation for a reporting period – each is the same report type, but covering different

non-overlapping sub-periods of the reporting period, and with different pre-filled information

contained in the pre-filled report instances provided. In the case of the BAS, for example, the

ATO will return a BAS report with pre-populated data applicable to the requesting business

which may consist of a single or multiple report instances in XBRL format.

2.2.6. Prelodge Service

The Pre-Lodge Report service allows a business or reporting intermediary to send reporting

data to an agency without completing a lodgement. This service is used in several business

scenarios across the various agencies – for example:

a) Allowing a business or reporting intermediary to lodge a completed report for the

purposes of executing complex agency business rules against the lodgement (in effect

performing a lodgement without “committing” the result to the agencies’ back end systems);

b) Allowing a business or reporting intermediary to execute agency back-end

calculations on a partially filled report.

For example, a report may be partially filled by a business or reporting intermediary to populate

financial data which is pre-lodged. The agency then uses this data to calculate fields such as

marginal tax rates and returns that information (in addition to the original report fields filled out

and provided in the pre-lodge action) to the business or reporting intermediary, allowing them to

complete the report and lodge it.

2.2.7. Lodge Service

This service allows a business or reporting intermediary to lodge a report.

Requests will be processed as soon as they are received by SBR. Requests are processed in

parallel (or concurrently), so at any point in time there may be many requests in-progress.

Due to the inherent nature of parallel processing it is not guaranteed that agencies receive

requests in the same order as originally received by SBR.

Agencies are expected to provide meaningful response information for report lodgements,

including for example non-technical human readable status information, in order that these can

be viewed by business users without change.

Given the importance of lodgement operations, there are two components in the message

structure which are included solely for use within lodgement responses:-

1. Lodgement Receipt

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 22

This structure provides a lodgement receipt identifier and lodgement date and time for use by

business when discussing lodgements with the agency concerned (see section 3.3.3.4)

This structure SHOULD be used to return lodgement information to the user. Any variation from

this will be described in the Message Implementation Guide (see section 2.3)

2. Non-repudiation token (proof of receipt)

The ability to provide a proof of receipt token was included in the design to assist businesses in

providing evidence of lodgement completion. A container for it is provided via a structure within

the SOAP header of the lodgement response (see section 3.2.2).

Due to variation in the legislation under which SBR agencies operate, no token will initially be

provided by SBR Core Services and thus business software SHOULD ignore this field. The

container has been retained in the design to allow for future developments in this area.

2.3. MESSAGE IMPLEMENTATION GUIDES (MIG)

The web services described above provide the building blocks from which the more complex

collaborations needed to fulfil an SBR reporting obligation are built. As far as possible, the web

services and the business payloads they carry are loosely coupled so that additional reporting

obligations MAY be added without requiring retesting of the web service infrastructure.

The way in which web services are choreographed to create a composite service to fulfil a SBR

reporting obligation is described within a Message Implementation Guide (MIG).

There is a MIG for each reporting obligation (e.g. Payroll Tax NSW OSR, ATO Activity Statement) and

its primary purpose is to describe:

• The business interactions required to fulfil the reporting obligation which in turn drives the

required web service choreography.

• The structure, content, rules and response messages of the obligation specific request and

response message payloads. The payload content is also defined, in a machine readable format,

by the relevant taxonomies which are referenced within the MIG. The MIG and the taxonomies

MUST thus be jointly consulted in order to gain a complete understanding when implementing a

business interaction.

• The interaction specific values needed for a small set of standard fields within the web service

message structure.

• Any specific use of optional fields within the web service infrastructure.

Points in this document where the reader needs to refer to the MIG for report specific information are

shown thus “Message Implementation Guide.”

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 23

3. MESSAGE STRUCTURE

3.1. OVERVIEW

All SBR Core services SHALL employ a common message format shown in the diagram below.

All messages SHALL be carried over a one way HTTPS transport, and employ the SOAP 1.2

envelope structure. SOAP messages MUST employ UTF-8 or UTF-16 character encodings.

Details of the structures used within the SOAP Header and Body are described in subsequent

sections. In the case of a discrepancy between this document and the WSDL schemas, the WSDL

schemas SHALL take precedence and SHALL be considered normative.

This document applies to V2.1 of the SBR Core Services WSDLs. XBRL is used as a sample payload

type in the figure below.

Figure 3: SBR Core Services SOAP Envelope Structure

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 24

3.2. SOAP HEADER

The SOAP header is a mandatory element for all authenticated calls to carry out the security related

information so it MUST be present for List, Lodge, Prelodge and Prefill services when they are called

via secured endpoint. However this element is not used for the calls to anonymous endpoints and

therefore SHOULD NOT be present in anonymous messages.

3.2.1. Security Element

Because SBR Core Services has adopted the Web Service Security 1.1 recommendation, all security

related information MUST be carried in one or more wsse:Security elements within the SOAP header.

Section 5 provides a detailed description of the security requirements and implementation.

This Security Element SHOULD NOT be included in the messages submitted via anonymous

endpoints and it will be ignored if presented.

3.2.2. NonRepudiation Element

As described in section 2.2.7, the SOAP header of every lodge response MUST include a

core:NonRepudiation element, containing a single child core:Message.NonRepudiationToken.Text

element, having no content.

It has been retained in the design to allow for future capability in the area of non-repudiation, but

SHOULD be ignored at present.

3.3. SOAP BODY

3.3.1. Top Level Wrapper Elements

SBR Core Services follows the recommendations of the WS-I Organisation Basic Profile 1.0. Thus

each SOAP body SHALL contain a single child element, as shown in the table below.

SERVICE REQUEST RESPONSE

List list:RequestList list:ResponseList

Prefill prefill:RequestPreFillReport prefill:ResponsePreFillReport

Prelodge prelodge:RequestPreLodgeReport prelodge:ResponsePreLodgeReport

Lodge lodge:RequestLodgeReport lodge:ResponseLodgeReport

Table 4: SOAP Body Child Elements

3.3.2. Standard Business Document Message (SBDM)

Because of the generic nature of the web services offered by SBR Core Services, there is a high

degree of commonality in the message structures used for both requests and responses across all

SBR Core web services.

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 25

Thus the service top level wrapper elements employ a common content model – a single Standard

Business Document Message element, or SBDM for short.

The SBDM is described by a single XML schema. Optionality is used throughout the SBDM structure

to allow for the limited variability between requests and responses.

The SBDM consists of two elements - a MANDATORY header called the Standard Business

Document Header (SBDH), and an OPTIONAL body called the Standard Business Document Body

(SBDB).

ELEMENT PURPOSE OPTIONALITY

sbdm:StandardBusinessDocumentHeader Facilitate Message Exchange MANDATORY

sbdm:StandardBusinessDocumentBody Facilitate Business Collaboration OPTIONAL

Table 5: Standard Business Document Message Content Model

The header carries the information necessary to facilitate message exchange, while the body carries

the business documents and attachments specific to the business collaboration. This separation

allows routing and processing decisions to be made without reference to the business content.

The SBDB is OPTIONAL to allow for the situation where no business document is necessary,

examples being a ping request (see section 6.3.3) where no business documents or attachments are

included, and a lodgement response where the only business information required is the lodgement

receipt information. If the SBDB is not provided, the BusinessDocuments element within the SBDH

SHOULD NOT be provided.

If the SBDB is provided, it MUST carry at least one business document.

3.3.3. Standard Business Document Header (SBDH)

Table 6 below shows the elements that constitute the SBDH, and their use within requests and

responses.

ELEMENT PURPOSE REQUEST RESPONSE

sbdm:Message.Type.Text Define the action to be taken with

the information provided in the

SBDB – see the Message

Implementation Guide for the value

required for a given interaction

MANDATORY MANDATORY

sbdm:MessageTimestamps Identify the date and time at which

the message was generated

MANDATORY MANDATORY

sbdm:Sender Identify the agency who processed

the request

SHOULD NOT

provide

MANDATORY

sbdm:Receiver Identify the agency to whom the

request should be directed

MANDATORY SHOULD NOT

provide

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 26

sbdm:LodgementReceipt Provide details of the results of a

successful lodgement request

SHOULD NOT

provide

OPTIONAL for

Lodge request

SHOULD NOT

provide for

other requests

sbdm:SoftwareInformation Provide details of the software used

to submit a request

MANDATORY SHOULD NOT

provide

sbdm:BusinessDocuments Provide metadata regarding the

business documents and

attachments included in the SBDB

OPTIONAL OPTIONAL

sbdm:MessageEvent Provide an indication of the

success or otherwise of a request,

together with information on any

errors that were detected

SHOULD NOT

provide

MANDATORY

Table 6: Standard Business Document Header Content Model

3.3.3.1. Checking of Message.Type.Text values

It is an agency responsibility to check for Message.Type.Text values that are not recognised.

Where a request is received containing a Message.Type.Text value that is not recognised, the

agency will generate a response either using the same unrecognised value, or the fixed value

“unknown.message.type.text”. In either case, the MessageEvent SHALL contain an item of

Error severity indicating the nature of the problem.

The coarse checking of Message.Type.Text values is also undertaken by Core Services in

order to standardise the nature of the response provided for this condition. The

Message.Type.Text value from the request message is checked against the list supported by

the target agency and if it is not supported then this situation is reported via a Core Services

generated SOAP fault SBR.GEN.FAULT.UNKNOWNMESSAGETYPETEXT (see section

4.5.3.1).

3.3.3.2. MessageTimestamps

The generator of a message MUST include a timestamp in the message indicating the date/time

at which the message was created. In addition to the date/time value, a timestamp MUST

include an indication of the entity generating the timestamp. All messages thus MUST contain at

least one timestamp.

If more than one timestamp is provided, they MUST be ordered according to the order that the

timestamping systems see the message i.e. BusinessEntity, SBRCore, GovernmentAgency.

A particular example of this is the message connectivity response (see section 6.3), which

MUST include the timestamp provided by the BusinessEntity in the request, SHOULD include a

timestamp for the date/time at which the request was seen by Core Services, and MUST

include the date/time at which the response was generated by the receiving agency.

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 27

Agencies MAY include BusinessEntity and Core Services timestamps on all responses, or only

on responses to message connectivity requests.

A system MAY add more than one timestamp. For instance, an agency MAY include one

timestamp to record the time at which a request is received, and another to record the time at

which the response is returned to Core Services.

Information in regards to the generation of date/time values may be found in section 3.5.

ELEMENT PURPOSE OPTIONALITY

sbdm:Message.Timestamp.Generation.Datetime Point in time at which the

timestamp was added to the

message

MANDATORY

sbdm:Message.Timestamp.GenerationSource.Code Entity adding the timestamp

Business software MUST

use the value

“BusinessEntity”

Agency software MUST use

the value

“GovernmentAgency”

MANDATORY

Table 7: Message Timestamp Content Model

3.3.3.3. Sender and Receiver

Because of the synchronous nature of SBR Core web service calls, and the authentication

information provided with each request as part of the security model, only the receiving party

MUST be included on requests to SBR Core Services. The provided designation text is used to

determine the agency to which the message MUST be routed.

Because business software does not communicate directly with the agency, the sender party

SHALL be included on responses as a confirmation that the correct agency did receive the

request.

ELEMENT PURPOSE OPTIONALITY

sbdm:IdentificationDetails.IdentifierDesignation.Text A unique string used to

identify the party under a

given scheme, whose type is

provided in the Identifier

Name element

MANDATORY

sbdm:IdentificationDetails.IdentifierName.Text The type of the identifier being

provided in the Designation

element

This field MUST always

contain the value

MANDATORY

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 28

“AgencyInternetDomainName”

Table 8: Sender and Receiver Content Model

The table below documents the standard designation text values that MUST be used for each of

the agencies within SBR Core Services.

AGENCY DESIGNATION TEXT

Australian Tax Office ato.gov.au

Australian Securities and Investments

Commission

asic.gov.au

Australian Prudential Regulation Authority apra.gov.au

QLD Office of State Revenue osr.qld.gov.au

NSW Office of State Revenue osr.nsw.gov.au

VIC Office of State Revenue sro.vic.gov.au

TAS Office of State Revenue sro.tas.gov.au

SA Office of State Revenue revenuesa.sa.gov.au

WA Office of State Revenue osr.wa.gov.au

NT Office of State Revenue tro.nt.gov.au

ACT Office of State Revenue revenue.act.gov.au

Table 9: Designation Text Values For SBR Core Services Agencies

3.3.3.4. LodgementReceipt

This element SHALL only be included on responses to lodgement requests, and in most cases,

will be used to provide the business user with information they can use to identify the lodgement

in interactions with the agency outside of SBR, such as helpdesks. The usual pattern would be

for the business software to store the receipt information against the message exchange for

future reference by the user.

Because both the identifier and date/time are optional, reference MUST be made to the

Message Implementation Guide to determine the use of these fields, and the approach more

generally to receipting, employed for a given obligation.

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 29

ELEMENT PURPOSE OPTIONALITY

sbdm:Lodgement.Receipt.Identifier A unique agency identifier for the

lodgement

OPTIONAL

sbdm:Lodgement.Receipt.Datetime The date and time at which the

agency recorded the lodgement as

having occurred

OPTIONAL

Table 10: Lodgement Receipt Content Model

3.3.3.5. SoftwareInformation

Every request to SBR Core Services MUST include information in regards to the software used

to generate it. This information is used for service access control, fault identification, usage

statistics, and service migration planning.

ELEMENT PURPOSE OPTIONALITY

sbdm:OrganisationNameDetails.OrganisationalName.Text The name of the

organisation

responsible for the

creation of the

business software.

MANDATORY

sbdm:SoftwareInformation.ProductName.Text The name of the

software used to

generate the request

MANDATORY

sbdm:SoftwareInformation.ProductVersion.Text The version of the

software used to

generate the request

MANDATORY

Table 11: Software Information Content Model

In order that this information is current, software developers SHOULD link the information

provided to the equivalent metadata within their products.

The SBR Core Services self-certification process captures the current state of the above

information for the software being registered, in order to ensure that access to SBR Core

Services MAY be limited to certified software.

It is recognised, however, that software versions MAY vary over time as a result of changes

unrelated to support for SBR. Comparisons made at run-time between the product name and

product version information provided at the point of certification and the information provided in

a request thus use a partial match, in order to provide several registration options, as listed

below.

1. Re-certify each time the software information changes.

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 30

In this case, the software information provided at certification completely matches that

provided at runtime. This approach would be suitable where the version information changes

infrequently.

2. Where the software information can be stemmed, only record the stem as part of the

certification information.

In this approach, only the starting portion of the information provided at runtime is registered.

If, for instance, the version string takes the form of Major.Minor.Patch e.g. “V6.2.P5”, and re-

certification of SBR Core Services support is only expected at major releases, it would be

reasonable to register the string “V6.” In a similar fashion, the product name might be

registered as “Acme Accounts”, while the value provided at runtime might be “Acme Accounts

Basic” or “Acme Accounts Pro”.

The implication of this is that a change of major version would necessitate re-certification.

3. Prefix the dynamic software information with a more stable identifier specifically related to

the level of SBR support within the product.

Where the form of the information is not amenable to stemming, or where SBR functionality is

modularised to the extent that it can carry its own version information, this approach allows a

more stable string to be provided as part of registration, with this string most likely specifically

related to SBR support within the product, optionally at the obligation level.

It is important, however, that the dynamic version information continues to be provided at run-

time to support service management functions such as fault analysis and statistics. Thus,

where a developer chooses to employ this approach, the fixed stable string used during

certification MUST be followed by the dynamic version information, separated by a “|”

character. The “|” character MUST NOT be included in the information used during registration

or as part of the dynamic software information. It SHOULD be replaced with an “_” if required.

For example, the following version information might be provided as part of registration –

“SBR 1.0” or “TFN 1.4”. At run-time, assuming the dynamic version information example

above, the request would contain the string “SBR 1.0|V6.2.P5” or “TFN 1.4|V6.2.P5”. Again,

the same approach MAY be applied to the product name information.

This approach offers the most stability across product releases, but requires an additional

level of version management as far as SBR support is concerned, and a more complex

construction process for the software information.

A developer MAY choose to adopt any of the above approaches. It is RECOMMENDED that

option b) be employed.

It should also be noted that while testing of SBR Core Services functionality within a product

SHOULD normally be expected to occur prior to certification, in some circumstances a

developer MAY choose to update the certification information without undertaking such testing.

This is particularly the case for option a), and to a lesser extent for option b).

For instance, for option a), a version change as a result of an update unrelated to SBR

functionality would imply the certification of this new version, but would not necessarily require

retesting of the SBR functionality. Similarly, for the example given in option b), a change in the

major version number may not imply a change in SBR capabilities. The online mechanism used

for registration seeks to make the process of replicating and updating registration information as

simple as possible to support these situations.

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 31

Ultimately, however, the self-assessment nature of the process means that a developer MUST

satisfy themselves that their product will function according to the specifications prior to

certifying a product.

3.3.3.6. BusinessDocuments

Where one or more business documents are provided in the SBDB of a message, the

BusinessDocuments element MUST be included in the SBDH. It MUST contain one entry for

each business document in the SBDB.

Where one or more binary attachments are provided in the SBDB, one of the business

document entries in the SBDH MUST have an associated entry for the attachment. An

attachment MUST be accompanied by a business document. The Message Implementation

Guide will identify when attachments are required as part of an obligation, and whether the

obligation requires the provision of a filename or description for attachments.

Each business document and attachment in the SBDB is assigned a sequence number.

Business documents and attachments MUST be separately numbered. Each numbering

scheme MUST start at one and increment by 1 for each item. The number is used to correlate

SBDB entries with the equivalent entry in the SBDH.

If required by an interaction, the Message Implementation Guide will document the use of the

business generated and government generated identifiers.

The Message Implementation Guide also identifies the AU Reports schemas considered valid

for the messages of a given obligation.

Information in regards to the generation of date/time values may be found in section 3.5.

ELEMENT PURPOSE OPTIONALITY

sbdm:BusinessDocument.Sequence.Number The unique identifier of a

business document within

the message

MANDATORY

sbdm:BusinessDocument.Creation.Datetime The date/time at which the

business document was

created

MANDATORY

sbdm:BusinessDocument.ValidationUniformResourceIdentifier.Text The URI that identifies the

specification by which the

business document may be

validated.

For XBRL payloads, the

value of this element MUST

match that of the href

attribute of the schemaRef

element within the XBRL

business document. The

value will be an absolute

URL (see below) pointing to

the report schema and starts

with

MANDATORY

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 32

“http://sbr.gov.au/taxonomy”.

For XML payloads the value

of this element MUST be

“xml” (case insensitive).

sbdm:BusinessDocument.BusinessGeneratedIdentifier.Text Specified by the MIG

Where the value provided in

this element is returned via

an element in a response

payload instance, the

restrictions imposed by the

definition of the taxonomy

element used (e.g. shorter

length) MUST be consulted

prior to generation of a

value for this element.

OPTIONAL

sbdm:BusinessDocument.GovernmentGeneratedIdentifier.Text Specified by the MIG OPTIONAL

Table 12: Business Document Content Model

SBR AU report schemas for XBRL payloads are published at the absolute URL

“http://sbr.gov.au/taxonomy”. Under this point, the path to a specific schema mirrors that described in

the “SBR AU Naming Convention” document relative to (but not including) the top level sbr_au folder.

An example URL is shown below;

http://sbr.gov.au/taxonomy/sbr_au_reports/asic/f388/f388_0001/f388.0001.lodge.request.02.00.report.xsd

Because the on-line availability of the SBR AU report schemas cannot be guaranteed, alternative

mechanisms, such as caching, SHOULD be used by client software where the run-time availability of

taxonomies is required.

ELEMENT PURPOSE OPTIONALITY

sbdm:Message.Attachment.SequenceNumber The unique identifier of

an attachment within the

message

MANDATORY

sbdm:Message.Attachment.FileName.Text The name of the file from

which the attachment

was sourced. No path

information should be

provided.

Specified by

the MIG

sbdm:Message.Attachment.Description.Text A description of the

contents of the

attachment

Specified by

the MIG

http://sbr.gov.au/taxonomy
http://sbr.gov.au/taxonomy/sbr_au_reports/asic/f388/f388_0001/f388.0001.lodge.request.02.00.report.xsd

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 33

Table 13: Message Attachment Content Model

3.3.3.7. MessageEvent

The MessageEvent element MUST be provided on every response in order to provide a

standard way in which software can determine the outcome of a request. It is covered in more

detail in section 4.6.

3.3.4. Standard Business Document Body (SBDB)

Business document and attachment contents are carried in the SBDB.

If included in the SBDM, the SBDB MUST contain at least one business document.

ELEMENT PURPOSE OPTIONALITY

sbdm:BusinessDocumentInstances Container for the

contents of the business

documents provided in

the message

MANDATORY

sbdm:AttachmentInstances Container for the

contents of the

attachments provided in

the message

OPTIONAL

Table 14: Standard Business Document Body Content Model

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 34

3.3.4.1. BusinessDocumentInstance

Each document MUST be accompanied by the sequence number by which it is identified within the

message. The SBDM schema allows any well-formed XML as the content of a business document.

ELEMENT PURPOSE OPTIONALITY

sbdm:BusinessDocument.Sequence.Number The unique identifier of a

business document

within the message

MANDATORY

sbdm:BusinessDocument.Instance.Text A container element for

the XML contents of the

business document

MANDATORY

Table 15: Business Document Instance Content Model

3.3.4.2. AttachmentInstance

Each attachment MUST be accompanied by the sequence number by which it is identified within the

message.

Each attachment MUST also carry an xmime:contentType attribute, indicating the MIME type of the

attachment, in line with the MTOM recommendation.

The Message Implementation Guide will provide details of the content types accepted as part of a

given interaction.

ELEMENT PURPOSE OPTIONALITY

sbdm:Message.Attachment.Sequence.Number The unique identifier of

an attachment within the

message

MANDATORY

sbdm:Message.Attachment.Instance.BinaryObject The base64 encoded

value of the attachment.

MANDATORY

xmime:contentType (attribute) The MIME type of the

attachment contents

MANDATORY

Table 16: Attachment Instance Content Model

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 35

3.4. SOAP FAULTS

The WSDL specification allows service definitions to include information on the format of the “Detail”

element of any SOAP faults they can return. Whilst it is considered best practice for Detail information

to be defined in the WSDL, given the synchronous nature of the Core Services design, it is not

expected that there will be a need for information in the “Detail” field. Therefore the SOAP faults

SHALL return the standard fields defined in the SOAP specification and the faults themselves SHALL

NOT be defined in the WSDLs.

The one condition under which SBR Core Services MAY return a SOAP fault with a detail element is

in regards to the condition of system unavailability (see section 4.5.3.2). It is expected that software

developers will need to manually code for this condition, rather than relying on code automatically

generated by their framework.

3.5. DATES AND TIMES

All dates and times MUST be expressed in messages as per the standard XSD built-in "datetime" data

type, as specified in http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#dateTime which is a

subset of the ISO-8601 standard. Timestamps MUST be expressed in UTC (also called Zulu) time.

Date/time element values SHALL be provided with time to the second as a minimum e.g.

2009-03-25T13:53:48Z

Date/time values in Message Timestamps (see section 3.3.3.2) SHOULD be provided to millisecond

accuracy to assist in problem resolution and performance management.

It should be noted that where date/time values are displayed to users, they SHOULD first be

converted into the local time zone.

3.6. TIMEOUT VALUES

There are a number of sources of delay between the issuing of a request by client software, and the

delivery to the software of the resulting response. These include transmission delays between the

client software and Core Services and between Core Services and the relevant agency, as well as

processing delays at Core Services and the Agency.

In order to ensure requests have the maximum chance of being successfully processed while allowing

for the variable nature of the delays involved, a staggered approach to timeout values has been

adopted.

While most requests are expected to be processed within the order of 10 seconds, Core Services

SHALL allow up to 5 minutes for a request to be processed by an agency.

Developers SHOULD thus configure their products to use a timeout of somewhat more than 5

minutes, depending on the transmission delays to Core Services expected as a result of the capacity

of their client's internet connections and the nature of the obligations being supported.

Any timing considerations unique to a particular obligation SHALL be documented in the Message

Implementation Guide.

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 36

3.7. XBRL INSTANCES

This section highlights a number of aspects common to the construction and processing of all XBRL

instances for use within the SBR program.

3.7.1. Ordering of Context, Unit and Fact Elements

The XBRL 2.1 specification places no restrictions on the ordering of context, unit or top-level facts

within an XBRL instance. Thus, processing of XBRL instances within SBR MUST NOT assume a

particular document order for these elements.

As an example, it MUST NOT be assumed that context elements will occur before the facts which

reference them.

3.7.2. Semantic Meaning of Context IDs and Unit IDs

While Message Implementation Guides provide RECOMMENDATIONS as to the values to be used for

context IDs and Unit IDS, processing of XBRL instances within SBR MUST NOT assume specific ID

values will be present within an instance. The association between facts and their associated context

or unit MUST be performed dynamically.

As an example, in determining which facts have been provided in a particular context, processing

MUST NOT assume the context has a particular ID value, and directly access those facts whose

context reference uses this value. Instead, it is necessary to examine the contents of the provided

context elements to ascertain the ID to use in locating the desired facts.

3.7.3. Redundant Contexts

The XBRL 2.1 specification allows the possibility of multiple redundant context elements within a

single XBRL instance, that is contexts that have the same contents (entity, period, dimensions etc) but

different IDs.

Message Implementation Guides define the contexts to be used in each SBR XBRL instance.

Reference MUST be made to these documents to determine if redundant context are permissible for a

given SBR report. To ensure interoperability, applications SHOULD avoid the generation of instances

containing redundant contexts as a general principle.

3.7.4. Namespace Prefixes Used On Elements

The XBRL 2.1 specification is underpinned by the XML Namespaces specification. XBRL instances

within SBR MUST thus conform to the requirements of this specification. As examples, processing of

XBRL instances in SBR MUST support the use of default namespaces, and MUST NOT assume that

specific namespace prefix values will be used when defining XML elements within a given SBR report.

 Message Implementation Guides MAY adopt conventions for namespace prefixes for reasons of

clarity or ease of update when documenting the facts expected within a given SBR report. However,

conformance to these conventions MUST not be assumed when processing XBRL instances within

SBR.

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 37

3.7.5. Namespace Prefixes Used in Context Element Dimension Definitions

The XBRL Dimensions 1.0 specification defines that the contents of the dimension attribute on an

xbrldi:explicitMember, and the contents of the xbrldi:explicitMember itself must be QNames. The prefix

on the QName is intended to be dereferenced via the in-scope namespace definitions to determine the

namespace of the value provided. As such, the prefix is transitory and the value used MAY be

arbitrary.

Message Implementation Guides MAY further constrain the prefixes used in the situations above to be

explicit values. Reference MUST be made to these documents to determine if specific prefix values

MUST be used for a given SBR report.

3.7.6. Monetary Units

The XBRL 2.1 specification requires that the QNames used in unit definitions for monetary values

MUST use ISO4217 currency designations for the local part, and MUST use a namespace of

“http://www.xbrl.org/2003/iso4217”. Unit definitions for monetary currencies in XBRL instances within

SBR MUST conform to these requirements. In particular, amounts representing Australian dollars

MUST be associated with a unit definition that uses a currency designation of “AUD”.

The error code SBR.GEN.GEN.24 (see section 4.6.1.1) is provided to indicate the condition where the

provided currency unit does not conform to the specification requirements. Error code

SBR.GEN.GEN.22 is provided to indicate that the currency unit for a fact is valid according to ISO

4217, but was not the unit expected by the receiving agency.

Unless otherwise stated in the Message Implementation Guide, all monetary amounts in XBRL

instance must be expressed in Australian dollars.

3.7.7. Measurement Accuracy

The XBRL 2.1 specification requires that each numeric item (apart from those whose value is a

fraction) carry either a precision or decimals attribute allowing the creator of an XBRL instance to

provide a statement of the accuracy of the provided value.

Unless otherwise stated in the relevant Message Implementation Guide,

when producing XBRL instances within SBR

1. non-financial numeric values, such as counts, SHOULD be provided with a value of ”0” for

the decimals attribute.

2. financial amounts accurate to the dollar SHOULD be provided with a value of “0” for the

decimals attribute.

3. financial amounts accurate to the cent SHOULD be provided with a value of “2” for the

decimals attribute.

when consuming XBRL instances within SBR

1. any digits considered to be insignificant SHOULD be replaced with zeros.

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 38

3.7.8. XBRL Element Attributes

Some SBR reports (e.g. ATO Activity Statement) have a single supporting XBRL taxonomy but have

context dependent rules about which elements need to be populated. In the Activity Statement

example, there are structures in place for reporting a number of different tax obligations such as GST,

FBT, PAYG, etc. But not every business is required to report on every obligation in every period. An

element that is MANDATORY for one business MAY not be required for another.

To assist in creating a valid lodge report, the SBR prefill service is often used to return an empty

“template” for a lodge. For example, the ATO Activity Statement as.0001.prefill.response message

SHALL contain the data elements that are required to be populated to complete a valid lodgement

(with some data elements pre-populated by the ATO).

There are three optional xml attributes that MAY be present on a prefill template and these are used to

guide the expected behaviour of the software package:

1. isEditable – is a boolean flag (xsd boolean data type) to indicate whether the content of an

element SHOULD be edited by the user of a web service.

2. isVisible - is a boolean flag (xsd boolean data type) to indicate whether the content of an

element SHOULD be displayed to a user.

3. xsi:nil – is a Boolean flag (xsd Boolean data type) to indicate that a MANDATORY field MAY

have a nil value.

The “isEditable” and “isVisible” attributes MUST be namespace qualified, and MUST use the fixed

value “http://sbr.gov.au/fdtn/sbr.02.00.tech” as the namespace URI. The xsi:nil attribute is a standard

attribute defined by the XML schema specification http://www.w3.org/TR/2001/REC-xmlschema-0-

20010502/

The use of these attributes is specific to the interaction employing them. The Message Implementation

Guide thus MUST be consulted to determine whether the attributes will be present on responses and

what defaults (if any) MUST be assumed.

3.8. XML INSTANCES

XML instances MUST comply with the relevant XML schema and schemas in turn MUST comply with

xml schema specification http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/

http://sbr.gov.au/fdtn/sbr.02.00.tech

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 39

4. ERROR MANAGEMENT

4.1. OVERVIEW

This chapter details the approach to be taken to the handling of errors and exception conditions

associated with the submission of requests to agencies via the SBR Core Services channel. It divides

the conditions that MUST be addressed into four broad areas;

1. user errors

2. client software errors

3. transport exceptions and

4. business events.

The nature of user and client software errors is such that their detection and remediation is largely the

province of client software providers, an example being the failure of a user to turn on their internet

connection. Thus, this document is largely silent on these types of errors, but where possible,

information is provided as part of interactions with SBR Core Services to assist in this process.

On the other hand, this document provided detailed information on the reporting and management of

errors in the latter two areas. In a nutshell, transport exceptions SHALL be handled using the

framework provided by the SOAP 1.2 recommendation, while business events SHALL be handled via

structures within the Standard Business Document Header structure.

4.2. CONTEXT

Figure 4 provides a high level overview of the possible sources of errors associated with the process

of a business user employing their client software to submit reports to agencies via SBR Core

Services. The diagram also shows that there are a number of human driven setup activities that

business users will need to undertake prior to using the electronic channel provided by SBR Core

Services. Client software will need to accommodate the possibility that users have not undertaken

these steps prior to attempting to submit reports via SBR Core Services.

Errors may result from a number of sources, each identified by a coloured triangle.

1. User errors (shown in green)

• Triangle 1 – the user has not obtained an SBR credential

• Triangle 2 – the user has not configured their internet connection correctly

• Triangle 13 – the user has not undertaken the appropriate registration or authorisation

procedures required by the agency

• Triangles 14, 15 – the information content (provided by the user) of the payloads is not correct

2. Client software problems (shown in yellow)

• Triangle 3 – there are defects in the client software

• Triangles 6, 7, 8, 11, 12 – the messages generated by the client software do not conform to the

required SBR Core Services standards

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 40

• Triangles 14, 15 – the payload is not correctly formed (XBRL type is used as an example)

3. Unavailability of components of SBR Core Services (shown in blue)

• Triangle 5, 10, 19, 20 – connectivity issues within the systems comprising SBR, or component

unavailability due to scheduled maintenance

• Triangle 16 – agency processing systems are not available

4. Errors internal to SBR Core Services systems (shown in red)

• Triangle 4, 9 and 18 – there are defects in SBR Core Services systems

• Triangle 11, 12 – problems are detected in the modifications made by core to messages provided

by business

• Triangle 17 – Internal problems within the agency processing systems

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 41

Figure 4: Sources of Errors In SBR Core Services platform

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 42 Page 42

4.3. HIGH LEVEL CATEGORISATION OF ERROR CONDITIONS

This document asserts that the various errors conditions described in section 4.2 can be placed into

four high level areas, as shown at the bottom of figure 4.

Two areas, client software or user errors, will be manifested via the various programming APIs used

by the client software. Where these APIs are provided by SBR, the associated documentation will

indicate the nature of the possible errors. This category is outside the scope of this document. It

should be noted that, in general, errors associated with invalid user credentials will be identified as

part of the use of the SBR provided APIs for Core Services.

The remaining conditions result from the client software interacting with SBR Core Services, and are

split into the remaining two high level areas.

Errors associated with the physical transport of messages from businesses to agencies fall into the

“Transport Exceptions” category. This area covers any problems related to ensuring SOAP messages

are successfully passed from business to government and back again. This document completely

describes the architecture to handle transport exceptions, as well as enumerating the conditions which

fall within this category.

Having established an error free flow of SOAP messages, all remaining error conditions will be as a

result of business activities. The term business event is used since some of the conditions flagged at

this level are of an informational or warning nature, and won’t necessarily represent an error condition

per se.

Business events SHALL be communicated via the “MessageEvent” structure within the Standard

Business Document Header. A MessageEvent MUST contain one or more “MessageEventItem”s, with

each item representing a single business event. It is thus possible to communicate multiple events

within a single business response.

Version: 2.2d Page 43

4.4. PRINCIPLES

The following principles have guided the development of the error approach outlined in this document.

4.4.1. P.01 Provide certainty as to the action to be taken in regard to an error

Reference P.01

Principle Provide certainty as to the action to be taken in regard to an error

Rationale/Motivation 1. Minimise the number of conditions for which software developers

must code

2. Improve consistency of error handling across software products

Implications 1. If there is no difference in the action expected from business or their

software as a result of two different error conditions, the errors need to

be grouped/categorised to make this clear.

4.4.2. P.02 Provide sufficient detail to allow appropriate action to be taken

Reference P.02

Principle Provide sufficient detail to allow appropriate action to be taken

Rationale/Motivation 1. The action to be taken by business as a result of an error should be

unambiguous

2. Improve the user experience by minimising resubmissions due to

misunderstanding of error conditions

Implications 1. Short and detailed descriptions of errors must be provided by agencies

2. Error conditions must be sufficiently fine-grained to allow differentiation

between actions to be taken

3. Where appropriate, include agency specific error information in the error

detail for follow up with agencies

Version: 2.2d Page 44

4.4.3. P.03 Provide consistency in the errors to be handled

Reference P.03

Principle Provide consistency in the errors to be handled

Rationale/Motivation 1. Provide consistency of error reporting across various obligations

2. Minimise implementation burden on software developers

Implications 1. Agencies need to harmonise the error information they produce

2. Agencies need to map, where possible, their individual error codes to a

harmonised SBR set

4.5. TRANSPORT EXCEPTIONS

4.5.1. SOAP Processing Model

For the Core Services platform the SBR program has adopted the W3C SOAP 1.2 recommendation,

together with an HTTP based transport, as the basis for the on-the-wire format of messages to be

exchanged between client software and agencies. This implies the solution SHALL be consistent with

the SOAP processing model, and SHALL leverage the SOAP fault mechanism as the primary way in

which transport related exceptions will be communicated.

It is recommended that the reader familiarise themselves with the SOAP specification prior to reading

the remainder of this document.

The top portion of figure 5 below shows how the SOAP 1.2 processing model maps to the SBR

solution, the solution being as shown in the bottom half of figure 4. The lower half of figure 5 provides

examples of the various conditions that will result in the returning of a SOAP fault to the client

software.

The software generating requests to government takes the role of the initial sender, while the agency

processing system takes the role of ultimate receiver. Core services acts as a forwarding intermediary.

At both the business and agency, a gateway may be optionally employed to mediate between the

internal architecture and that used by SBR Core Services. Any such gateway takes the role of a

forwarding intermediary, and logically maps to the intermediate processing stages shown in figure 4.

Because SBR Core Services uses the Request/Response Message Exchange Pattern (MEP) for all

exchanges between business and SBR Core Services, a successful exchange will see a valid SOAP

message generated by the initial sender, forwarded to the relevant agency via the chain of SOAP

intermediaries, actioned by the agency processing system, and a valid response message generated

and returned to the initial sender via the same chain of SOAP intermediaries.

The SOAP recommendation specifies that, by their nature, SOAP intermediaries do not play the role of

ultimate receiver, and thus SHOULD NOT process the body of a SOAP message. Any errors MUST

be flagged via the generation of SOAP faults. In general, SBR Core Services complies with this, in

particular in relation to the generation of responses.

Version: 2.2d Page 45

Figure 5: SOAP Fault Processing

Version: 2.2d Page 46

There MAY, however, be a blurring of responsibilities between gateway and processing systems. A

case in point is the error condition in which the taxonomy(ies) on which the payload(s) of the message

are based are not supported by the receiving agency. Based on a strict interpretation of the SOAP

recommendation, if detected by the agency gateway, this error condition SHOULD be indicated via a

SOAP fault. However, in order to allow a strict separation of the generic messaging infrastructure and

issues surrounding the versioning of taxonomies, this condition is considered to be detected by the

processing system, and hence SHOULD be indicated via a business event rather than a SOAP fault.

4.5.2. Use of SOAP Fault fields

The SOAP 1.2 recommendation defines a number of standard fields within a SOAP Fault.

4.5.2.1. Code Element

SBR Core Services SHALL conform to the SOAP 1.2 recommendation and use only the

standard values it defines for the Code element. As shown in figure 5, most faults will use a

code of “env:Sender” or “env:Receiver”.

As described in the recommendation, a code of “env:Sender” carries with it an expectation that

the sender will change/correct the request, whereas “env:Receiver” implies a downstream

problem with no change needed to the request. Thus figure 5 shows some apparent duplication

of error conditions (e.g. SBDM structure/content error), the differentiating factor being the

source of the problem i.e. client software or SBR Core Services component.

4.5.2.2. Subcode Element

SBR Core Services SHALL use subcodes in order to provide the detail necessary as per P.02.

More than one level of subcode MAY be necessary in order to establish the high level action

required in each case as per P.01, while providing the necessary detail as per P.02.

Subcodes defined by SBR Core Services SHALL use the namespace

“http://sbr.gov.au/comn/core.02.data”. Subsequent sections use a prefix of “sbr” to correspond

to this namespace, in line with section 1.5.

These subcodes SHALL follow the naming convention defined in section 4.6.1.1, and, for faults

from Core Services, SHALL use the Jurisdiction.Agency.Function value of “SBR.GEN.FAULT”.

In line with the approach to fault codes employed by SOAP related specifications, the identifiers

used SHALL be short mnemonics of the condition represented. An example is shown below for

the case where too many payload instances have been included in a request;

sbr:SBR.GEN.FAULT.TOOMANYINSTANCES

SBR Core Services is employing the WS-Security 1.1 and SAML Token Profile 1.1

recommendations from OASIS. The subcodes itemised in these recommendations in sections

12 and 3.6 respectively SHALL be used to report security related exceptions. These subcodes

do not provide a great deal of granularity, however, typically to minimise the information

available to a party undertaking a cryptographic attack. Thus more detailed subcodes SHALL be

provided in testing environments provided by SBR Core Services in order to assist the rapid

resolution of issues that arise during execution of test scenarios.

http://sbr.gov.au/comn/core.02.data

Version: 2.2d Page 47

4.5.2.3. Reason Element

The reason element SHALL describe the specifics of the particular error condition, and SHALL

thus reflect the finest granularity of subcode provided in the fault.

4.5.2.4. Node Element

In line with the SOAP 1.2 recommendation, the following URIs SHALL be employed in SBR

Core Services.

NODE URI

Core Services http://sbr.gov.au/comn/node/core

Agency http://sbr.gov.au/comn/node/{agency designation text}

e.g. http://sbr.gov.au/comn/node/ato/gov/au

VANguard http://sbr.gov.au/comn/node/vanguard

Table 17: SOAP Fault Node element URI values

It should be noted that when including the agency designation text (see 3.3.3.3) into the

element value, “.” should be replaced with “/” as per the example above. Faults generated by

agencies SHOULD include a Node element.

4.5.2.5. Role Element

Role elements SHOULD not be included in SBR Core Services SOAP faults.

4.5.2.6. Detail Element

It is not intended that SOAP faults provided to client software in the production environment

carry any additional information over and above the codes and reason elements already

described. Thus they SHALL be provided without a Detail element.

For SOAP faults generated by agencies, it is intended that Core Services will log any contents

of Detail elements, but SHALL NOT include this information in the SOAP fault provided to client

software – see 4.5.3.4. This SHALL prevent the leakage of sensitive production information.

The passing of the Detail element through to client software SHALL, however, be configurable

in Core Services. Thus it SHALL be possible in testing environments provided by SBR Core

Services to allow this information to be passed through, in order to assist the rapid resolution of

issues that arise during execution of test scenarios.

4.5.3. Exception Conditions

Figure 5 documents a range of conditions that may occur while exchanging messages with SBR Core

Services. In line with principle P.01, however, they are grouped into three categories – client software

http://sbr.gov.au/comn/node/core
http://sbr.gov.au/comn/node/%7bagency%20designation%20text%7d
http://sbr.gov.au/comn/node/ato/gov/au
http://sbr.gov.au/comn/node/vanguard

Version: 2.2d Page 48

errors, SBR Core Services unavailability and SBR Core Services internal errors. At the highest level,

these categories identify the distinct actions needed to be taken on receipt of a SOAP fault.

4.5.3.1. Client software errors

All errors in this category result from a defect within the software used by business causing the

generation of invalid requests. It is intended that the SBR Core Services testing regime will

allow the detection and rectification of this category of errors. However the possibility still exists

that such conditions will occur at runtime, perhaps triggered by edge cases in data contents.

The bulk of these errors will be detected and reported by Core Services, with the remainder

being detected by agencies.

In line with the SOAP 1.2 recommendation, errors in this category SHOULD mostly be reported

with a SOAP fault. Such faults SHALL use a code value of “env:Sender”. The only exceptions to

this are conditions called out by the W3C recommendation itself such as

“env:VersionMismatch”. It SHOULD be noted that Core Services will not be supporting V1.1 of

the SOAP recommendation.

Where an agency generates a SOAP fault as a result of a client software error, a code value of

“env:Sender” SHALL be used. A fault from an agency with a code value of “env:Sender” SHALL

pass unaltered through Core Services and be provided as is to the client software. Thus the

same client logic will be able to handle such faults, regardless of whether they are generated by

Core Services or an agency. It should be noted that the value of the Node element MAY be

used to provide an indication as to the source of the fault.

It is expected that if errors in this category occur during the operation of a software package, the

business user would be expected to contact their software provider for rectification advice.

The subcodes below SHALL be used to indicate the detection of client software errors.

SUBCODE REASON DESCRIPTION/COMMENT

sbr:SBR.GEN.FAULT.MALFORMEDXML The request was not

well formed XML.

The request is not well formed XML,

as documented in the XML

specification.

sbr:SBR.GEN.FAULT.INVALIDXML The request does not

validate against the

service XML Schema

The request does not validate against

the XML Schema for the service,

which is defined as part of the WSDL

for the service.

sbr:SBR.GEN.FAULT.TOOMANYINSTANCES Payload instance limit

exceeded

The request contains more payload

instances than are allowed by the

agency.

sbr:SBR.GEN.FAULT.TOOMANYATTACHMENTS Attachment limit

exceeded

The request contains more

attachments than are allowed by the

agency.

sbr:SBR.GEN.FAULT.TOOMANYDOCUMENTS Payload instance limit

and attachment limit

exceeded

Both the agency limit on payload

instances and on attachments have

been exceeded.

Version: 2.2d Page 49

sbr:SBR.GEN.FAULT.TOOBIG Request size limit

exceeded

SBR Core Services limit on maximum

request size is set to cater for all

obligation requirements for the

program.

sbr:SBR.GEN.FAULT.ATTACHMENTERROR The request message

attachment could not be

processed.

The request message contained an

attachment that could not be

processed. Note: Soap with

Attachments is not supported by SBR

Core Services.

sbr:SBR.GEN.FAULT.UNKNOWNSERVICE Unknown agency or

service

The value provided to identify the

receiving party is not recognised, or a

request has been made for a service

not offered by the receiving party.

sbr:SBR.GEN.FAULT.SOFTWAREBLOCKED The software used to

generate this request

has been blocked from

submitting to SBR Core

Services

SBR Core Services has the capability

to block requests from particular client

software.

This fault is generated in the situation

where this capability is enabled.

sbr:SBR.GEN.FAULT.SOFTWARENOTREGISTERED The software used to

generate this request

has not been registered

with SBR Core Services

SBR Core Services has the capability

to reject requests from client software

that has not been self-certified by its

developer organisation.

This fault is generated in the situation

where this capability is enabled.

sbr:SBR.GEN.FAULT.INVALIDSBDM The structure of the

request does not

conform to the

requirements

documented in the SBR

Core Web Services

Implementation Guide

This document defines a number of

rules regarding request structure, over

and above those enforced by the

WSDL schemas.

This fault is generated when a

violation occurs of these rules, an

example being the absence of an

element that is MANDATORY on

request messages but not on

response messages.

sbr:SBR.GEN.FAULT.UNKNOWNMESSAGETYPETEXT The message type text

of the request is not

known by the receiving

agency

The Message Implementation Guide

relevant to the obligation being

implemented by the message

exchange provides details of the

expected message type text values.

sbr:SBR.GEN.FAULT.UNKNOWNVALIDATIONURI One or more of the

business documents in

the request uses a

The Validation URIs included in

requests must obey the format rules

specified in this document, as well as

Version: 2.2d Page 50

validation URI that is not

known by the receiving

agency

matching the values documented in

the Message Implementation Guide

relevant to the obligation being

implemented by the message

exchange.

This error is applicable only to XBRL

payloads.

sbr:SBR.GEN.FAULT.MISMATCHEDPAYLOADS Mismatched payload

types were provided

First Validation URI element is used to

recognise the payload format and then

it cross-checked against other

Validation URI elements for

consistency. All payloads in the

message should be of the same type.

The error is raised when business

documents in the request message

have payloads of different types (e.g.

XBRL and XML)

sbr:SBR.GEN.FAULT.UNSUPPORTEDPAYLOAD Unsupported payload

type was provided

The error is raised if the value of the

first Validation URI element is not

matched against the list of supported

payload types. See rules applicable to

the Validation URI element in XBRL

payloads above.

sbr:SBR.GEN.FAULT.UNKNOWNPAYLOADTYPE The payload type of the

request is not known to

be supported for the

message type text used

The error is raised when the payload

type of the request message is one of

the supported (e.g. XBRL, XML) but

target agency doesn’t support it for the

specified Message.Type.Text.

wsse:SecurityTokenUnavailable No security token was

provided

A VANguard supplied security token

must be included in the request.

wsse:FailedCheck The provided signatures

or encryption were

invalid

This error will occur as a result if

- the security token does not decrypt

successfully
1

- the session signature was not valid
1

- the SBDM signature was not valid
1

wsse:InvalidSecurityToken An invalid security token

was provided

This error covers a number of

circumstances related to the security

token :-

- The signature of the provided token

was invalid

- Core Services is not the audience

- the token has expired

- the token did not include a session

Version: 2.2d Page 51

key
1

- the token did not include the required

set of mandatory claims
1

- the session key could not be

decrypted
1

- the certificate used to sign the SBDM

was not the same as that used to

obtain the security token
1

A current VANguard supplied security

token must be included unaltered in

the request. The certificate presented

to obtain this token should be used to

sign the SBDM.

1
 In test, this condition will be indicated via an additional subcode - see the table of security subcodes below

Table 18: SOAP Fault Subcodes for client software errors

In testing environments, the following subcodes will also be provided, where relevant, in addition

to the WS-Security subcode.

SUBCODE REASON DESCRIPTION/COMMENT

sbr:SBR.GEN.FAULT.CANTDECRYPTTOKEN The security token could

not be decrypted

See Reason

sbr:SBR.GEN.FAULT.SESSIONKEYMISSING No session key was

provided

See Reason

sbr:SBR.GEN.FAULT.CANTDECRYPTSESSIONKEY The session key could not

be decrypted

See Reason

sbr:SBR.GEN.FAULT.INVALIDSESSIONSIGNATURE The session based

signature is invalid

See Reason

sbr:SBR.GEN.FAULT.INVALIDSBDMSIGNATURE The SBDM signature is

invalid

See Reason

sbr:SBR.GEN.FAULT.INVALIDTOKENSIGNATURE The security token

signature is invalid.

Provided the token provided by

VANguard is passed through unaltered

to SBR Core Services, this error should

not occur under normal circumstances.

sbr:SBR.GEN.FAULT.MISSINGCLAIMS The security token did not

include all of the

mandatory information

The token provided by VANguard did

not include all of the mandatory claims

expected by SBR.

sbr:SBR.GEN.FAULT.CERTIFICATEMISMATCH The security token

certificate does not match

the SBDM signature

The same certificate must be used to

obtain the security token and to sign

the SBDM

Version: 2.2d Page 52

Table 19: SOAP Fault Security Subcodes (Test Environments Only)

The figures below show examples of the faults that will be generated as a result of client

software errors. Line wraps within text are for presentational purposes only.

<env:Fault >

 <env:Code>

 <env:Value>env:Sender</env:Value>

 <env:Subcode>

 <env:Value>sbr:SBR.GEN.FAULT.MALFORMEDXML</env:Value>

 </env:Subcode>

 </env:Code>

 <env:Reason>

 <env:Text xml:lang="en"> The request was not well formed XML</env:Text>
 </env:Reason>

 <env:Node>http://sbr.gov.au/comn/node/core</env:Node>

</env:Fault>

Figure 6: SOAP Fault indicating XML is not well formed

<env:Fault >

 <env:Code>

 <env:Value>env:Sender</env:Value>

 <env:Subcode>

 <env:Value>sbr:SBR.GEN.FAULT.INVALIDXML</env:Value>

 </env:Subcode>

 </env:Code>

 <env:Reason>

 <env:Text xml:lang="en">The request does not validate against the service

XML schema</env:Text>

 </env:Reason>

 <env:Node>http://sbr.gov.au/comn/node/core</env:Node>

</env:Fault>

Figure 7: SOAP Fault indicating XML schema validation failure

<env:Fault >

 <env:Code>

 <env:Value>env:Sender</env:Value>

 <env:Subcode>

 <env:Value>sbr:SBR.GEN.FAULT.TOOMANYINSTANCES</env:Value>

 </env:Subcode>

 </env:Code>

 <env:Reason>

 <env:Text xml:lang="en">Payload instance limit exceeded</env:Text>

 </env:Reason>

 <env:Node>http://sbr.gov.au/comn/node/core</env:Node>

</env:Fault>

Figure 8: SOAP Fault indicating too many payload instances

<env:Fault >

 <env:Code>

 <env:Value>env:Sender</env:Value>

 <env:Subcode>

 <env:Value>wsse:SecurityTokenUnavailable</env:Value>

Version: 2.2d Page 53

 </env:Subcode>

 </env:Code>

 <env:Reason>

 <env:Text xml:lang="en">No security token was provided</env:Text>

 </env:Reason>

 <env:Node>http://sbr.gov.au/comn/node/core</env:Node>

</env:Fault>

Figure 9: SOAP Fault indicating a missing security token

Version: 2.2d Page 54

<env:Fault >

 <env:Code>

 <env:Value>env:Sender</env:Value>

 <env:Subcode>

 <env:Value>wsse:InvalidSecurityToken</env:Value>

 </env:Subcode>

 </env:Code>

 <env:Reason>

 <env:Text xml:lang="en">An invalid security token was provided</env:Text>

 </env:Reason>

 <env:Node>http://sbr.gov.au/comn/node/core</env:Node>

</env:Fault>

Figure 10: SOAP Fault indicating an invalid security token (production)

<env:Fault >

 <env:Code>

 <env:Value>env:Sender</env:Value>

 <env:Subcode>

 <env:Value>wsse:InvalidSecurityToken</env:Value>

 <env:Subcode>

 <env:Value>sbr:SBR.GEN.FAULT.CERTIFICATEMISMATCH</env:Value>

 </env:Subcode>

 </env:Subcode>

 </env:Code>

 <env:Reason>

 <env:Text xml:lang="en">The security token certificate does not match the

SBDM signature</env:Text>

 </env:Reason>

 <env:Node>http://sbr.gov.au/comn/node/core</env:Node>

</env:Fault>

Figure 11: SOAP Fault indicating an invalid security token (test)

<env:Fault >

 <env:Code>

 <env:Value>env:Sender</env:Value>

 <env:Subcode>

 <env:Value>wsse:FailedCheck</env:Value>

 </env:Subcode>

 </env:Code>

 <env:Reason>

 <env:Text xml:lang="en">The provided signatures or encryption were

invalid</env:Text>

 </env:Reason>

 <env:Node>http://sbr.gov.au/comn/node/core</env:Node>

</env:Fault>

Figure 12: SOAP Fault indicating an invalid digital signature (production)

Version: 2.2d Page 55

<env:Fault >

 <env:Code>

 <env:Value>env:Sender</env:Value>

 <env:Subcode>

 <env:Value>wsse:FailedCheck</env:Value>

 <env:Subcode>

 <env:Value>sbr:SBR.GEN.FAULT.INVALIDSBDMSIGNATURE</env:Value>

 </env:Subcode>

 </env:Subcode>

 </env:Code>

 <env:Reason>

 <env:Text xml:lang="en">The SBDM signature is invalid</env:Text>

 </env:Reason>

 <env:Node>http://sbr.gov.au/comn/node/core</env:Node>

</env:Fault>

Figure 13: SOAP Fault indicating an invalid digital signature (test)

<env:Fault >

 <env:Code>

 <env:Value>env:Sender</env:Value>

 <env:Subcode>

 <env:Value>sbr:SBR.GEN.FAULT.UNKNOWNSERVICE</env:Value>

 </env:Subcode>

 </env:Code>

 <env:Reason>

 <env:Text xml:lang="en">Unknown agency or service</env:Text>

 </env:Reason>

 <env:Node>http://sbr.gov.au/comn/node/core</env:Node>

</env:Fault>

Figure 14: SOAP Fault indicating unknown agency or service not supported by an
agency

4.5.3.2. SBR Core Services unavailability

A reality of the SBR Core Services platform, given the number of parties, components and

business processes involved, is that at times, portions of the overall system may be unavailable.

It is important that client software is aware of the “normality” of this error condition and takes the

necessary steps to resubmit the request at a later time. This may involve automatic queuing of

the request for resubmission at a later time, or notification to the user that they should initiate

the resubmission after a suitable delay. Where resubmission is automated, it is recommended

that an increasing delay be added between resubmission attempts.

In some cases, the time at which the service will be available again is known. In this case, the

reason text SHOULD contain the date and time (including timezone) after which the service is

expected to be available again. In addition, in order to allow automatic requeuing of the request,

the fault detail MAY contain the equivalent information in a machine consumable format (see

example below). The presence of this information SHOULD be checked for, and where

possible, used to requeue the request. The human readable and machine consumable times

MAY not align exactly, in order to allow the spreading of requests over time after the service

resumes.

Version: 2.2d Page 56

Regardless of the approach taken by the software, it is important that the indications provided to

business users ensure they understand there is no need to contact either their software provider

or the agency to which the request is being submitted. It is also important to realise that, given

the independence of agency operations, it SHOULD NOT be assumed that because one

interaction with one agency fails that all interactions with all agencies will fail. Software

developers SHOULD adopt an optimistic approach to request submission, taking into account

any information provided in regards to the date and time at which the service will be available

again.

With the exception of the condition where Core Services does not respond at all to requests, all

conditions resulting in unavailability of SBR Core Services SHALL be reported to client software

via a SOAP fault with a code value of “env:Receiver” and a subcode of

“sbr:SBR.GEN.FAULT.UNAVAILABLE”. The way in which a timeout condition on a request to

Core Services will be flagged is dependent on the platform used by the client software.

Where a SOAP fault is generated, the reason message SHALL reflect the specific condition that

resulted in the unavailability of the service. An equivalent subcode SHALL also be provided, the

possible values being provided below.

SOAP faults generated by agencies that carry a subcode of

sbr:SBR.GEN.FAULT.UNAVAILABLE SHALL pass unaltered through Core Services and be

provided as is to the client software.

SUBCODE REASON DESCRIPTION/COMMENT

sbr:SBR.GEN.FAULT.CANTCONNECTTOAGENCY A connection could not

be established to an

agency

SBR Core Services was not able to

initiate a connection to the agency.

sbr:SBR.GEN.FAULT.HTTPERRORFROMAGENCY The agency gateway

could not process the

request.

The HTTP headers included in the

agency response indicated an error.

This is often caused by the service

being unavailable at the agency

gateway.

sbr:SBR.GEN.FAULT.AGENCYNOTRESPONDING The connection with the

agency timed out

SBR Core Services was able to

connect to the agency, but did not

receive a response to the submitted

request.

sbr:SBR.GEN.FAULT.NOAGENCYPROCESSING The agency processing

system is unavailable

The agency gateway is accepting

requests, but the backend processing

system is not currently available.

Table 20: SOAP Fault Subcodes for SBR Core Services unavailability

Version: 2.2d Page 57

The figures below show examples of the faults that will be generated as a result of unavailability

of SBR Core Services components.

<env:Fault >

 <env:Code>

 <env:Value>env:Receiver</env:Value>

 <env:Subcode>

 <env:Value>sbr:SBR.GEN.FAULT.UNAVAILABLE</env:Value>

 <env:Subcode>

 <env:Value>sbr:SBR.GEN.FAULT.AGENCYNOTRESPONDING</env:Value>

 </env:Subcode>

 </env:Subcode>

 </env:Code>

 <env:Reason>

 <env:Text xml:lang="en">The connection to the agency timed out</env:Text>

 </env:Reason>

 <env:Node>http://sbr.gov.au/comn/node/core</env:Node>

</env:Fault>

Figure 15: SOAP Fault indicating agency is unavailable

<env:Fault >

 <env:Code>

 <env:Value>env:Receiver</env:Value>

 <env:Subcode>

 <env:Value>sbr:SBR.GEN.FAULT.UNAVAILABLE</env:Value>

 <env:Subcode>

 <env:Value>sbr:SBR.GEN.FAULT.NOAGENCYPROCESSING</env:Value>

 </env:Subcode>

 </env:Subcode>

 </env:Code>

 <env:Reason>

 <env:Text xml:lang="en">We are unable to process your request at this

time. Please try again after 30-06-2009 09:00:00 EST</env:Text>

 </env:Reason>

 <env:Node>http://sbr.gov.au/comn/node/asic/gov/au</env:Node>

 <env:Detail>

 <sbr:FaultDetail>

 <sbr:AvailableAfter>2009-06-29T23:00:00Z</sbr:AvailableAter>

 </sbr:FaultDetail>

 </env:Detail>

</env:Fault>

Figure 16: SOAP Fault indicating agency processing system is unavailable

The figure above shows an example of a fault indicating unavailability generated by an agency,

as indicated by the value of the Node element. Such a fault would have passed unaltered

through Core Services.

4.5.3.3. SBR Core Services internal errors

As with the client software, core and agency systems may, at times, exhibit defects. While the

testing regime SHOULD eliminate the bulk of these, it is nevertheless important that the SBR

Core Services exception handling regime allow for their possibility at runtime.

As figure 5 shows, there is a broad range of errors that may occur internal to SBR Core

Services. They have been grouped under a single subcode, however, because the actions

Version: 2.2d Page 58

needed to be taken by business are the same – requeue the request, and possibly contact the

software provider or agency to ensure the failure is known to SBR. The latter action recognises

that the error may be unique to the request, for example as a result of particular data included in

the request.

All error conditions in this category SHALL be reported to client software via a SOAP fault with a

code value of “env:Receiver” and a subcode of “sbr:SBR.GEN.FAULT.INTERNALERROR”.

The reason message SHALL reflect the specific condition that resulted in the internal error. An

equivalent subcode SHALL also be provided as per the table below.

SUBCODE REASON DESCRIPTION/COMMENT

sbr:SBR.GEN.FAULT.MALFORMEDXMLINCORE Malformed XML

encountered during

Core Services

processing

Malformed XML was generated within

Core Services during message

processing.

sbr:SBR.GEN.FAULT.GENERALERRORINCORE An unhandled error

occurred within SBR

Core Services

This error is generated whenever an

unhandled error is detected in Core

Services

Sbr:SBR.GEN.FAULT.CONFIGURATIONERRORINCORE Configuration Error

within SBR Core

Services.

An error occurred while accessing

Core configuration data

Sbr:SBR.GEN.FAULT.IDENTIFIERERRORINCORE SBR Core Services

was unable to retrieve

a unique identifier for

this request

SBR Core Services was unable to

retrieve the unique message identifier

for the request

sbr:SBR.GEN.FAULT.MALFORMEDXMLFROMAGENCY The response was not

well formed XML

The agency XML is not well formed

according to the XML specification.

sbr:SBR.GEN.FAULT.INVALIDXMLFROMAGENCY The response does not

validate against the

service XML Schema

The agency response does not

validate against the XML Schema for

the service, which is defined as part of

the WSDL for the service

Sbr:SBR.GEN.FAULT.FAULTFROMAGENCY Reason text in fault will

be copied from the

fault received from the

agency as per section

4.5.3.4

SBR Core Services received a SOAP

fault from the agency, which was not

related to system availability. (see

section 4.5.3.4 for further detail)

sbr:GEN.FAULT.AGENCYATTACHMENTERROR The agency response

message attachment

could not be

processed.

The agency response message

contained an attachment that could

not be processed.

wsse:FailedCheck The agency provided

signature was invalid

This error will occur as a result the

agency signature not being valid.

Version: 2.2d Page 59

Table 21: SOAP Fault Subcodes for SBR Core Services Internal Errors

The figure below shows an example of the faults that SHALL be generated as a result of

internal errors in SBR Core Services components.

<env:Fault >

 <env:Code>

 <env:Value>env:Receiver</env:Value>

 <env:Subcode>

 <env:Value>sbr:SBR.GEN.FAULT.INTERNALERROR</env:Value>

 <env:Subcode>

 <env:Value>sbr:SBR.GEN.FAULT.INVALIDXMLFROMAGENCY</env:Value>

 </env:Subcode>

 </env:Subcode>

 </env:Code>

 <env:Reason>

 <env:Text xml:lang="en">An error was detected in the response from the

agency</env:Text>

 </env:Reason>

 <env:Node>http://sbr.gov.au/comn/node/core</env:Node>

</env:Fault>

Figure 17: SOAP Fault indicating invalid XML from an agency

4.5.3.4. Agency internal errors

Agencies are employing a variety of frameworks to implement their gateways and processing

systems. The nature of these frameworks means that, at times, it will be impractical for agencies

to control the exact format of the SOAP faults generated. These faults may also expose

implementation details that agencies do not wish to reveal to external parties.

Thus, in line with P.03, this document proposes that core services undertake the task of filtering

and unifying these faults. This is reflected in Figure 5 in the last exception - “Agency

gateway/processing system internal error”. The subcode(s) of the agency fault will be

transcribed into a subcode or subcodes of the fault provided to the client software. Similarly, the

Node element value and Reason value in the agency fault will be provided as the equivalent

values in the fault provided to the client software. This information is to assist the user in

communications with the agency, and is not intended to be interpretable by the client software.

Any information provided in the “Detail” element of the agency generated fault will be logged by

core services. Its inclusion in the fault sent to the client software is discussed in section 4.5.2.6.

An example of the fault (after processing by Core Services) representing an internal error within

an agency is shown below. Note that the agency specific subcode is for example purposes only.

It should be noted that the above treatment SHALL only be applied to faults from agencies that

have a code of “env:Receiver”. Faults from agencies with a code of “env:Sender” will be passed

unaltered through Core Services (see 4.5.3.1).

Version: 2.2d Page 60

<env:Fault >

 <env:Code>

 <env:Value>env:Receiver</env:Value>

 <env:Subcode>

 <env:Value>sbr:SBR.GEN.FAULT.INTERNALERROR</env:Value>

 <env:Subcode>

 <env:Value>sbr:SBR.GEN.FAULT.FAULTFROMAGENCY</env:Value>

 <env:Subcode>

 <env:Value>sbr:ATO.GEN.FAULT.STACKTRACE</env:Value>

 </env:Subcode>

 </env:Subcode>

 </env:Subcode>

 </env:Code>

 <env:Reason>

 <env:Text xml:lang="en">An error was detected within the ATO</env:Text>

 </env:Reason>

 <env:Node>http://sbr.gov.au/comn/node/ato/gov/au</env:Node>

</env:Fault>

Figure 18: SOAP Fault indicating an agency internal error

Version: 2.2d Page 61

4.6. MESSAGE EVENTS

In order that every message exchange has an explicit indication of its result, every response to a

service request MUST include one MessageEvent as part of the Standard Business Document

Header. An event MUST include at least one MessageEventItem. Note that items MAY not necessarily

be ordered by severity within a MessageEvent.

4.6.1. Use of event item fields

4.6.1.1. Error Code

Every item SHALL carry a code to uniquely identify the condition that has occurred.

In order to allow codes to be managed in a distributed fashion, codes SHALL take the following

format:

{Jurisdiction}.{Agency}.{Function}.{Id}

represented by the regular expression

([A-Z0-9])+.([A-Z0-9])+.([A-Z0-9])+.([A-Z0-9])+

Initially

Jurisdiction = SBR | CMN | QLD | NSW | ACT | VIC | SA | WA | NT | TAS

Agency = Jurisdiction specific agency code

 For CMN (Commonwealth), = ATO, ASIC, APRA, ABS

 For SBR = GEN (i.e. SBR wide codes)

 For States = OSR (Offices of State Revenue)

Function = Agency specific functional area or GEN for agency wide codes

 For SBR = GEN or FAULT

Id = function specific identifier (format may vary across agencies).

Examples are shown below;

SBR.GEN.FAULT.TOOMANYINSTANCES

CMN.ATO.TFN.OK

QLD.OSR.PRL.000001

The above structure recognises and caters for the current situation where agency errors are

unharmonised, and will need to be passed through to client software. This is not ideal, however

as it implies the possibility of inconsistency in the messages business will receive for what are

equivalent conditions in different agency reports.

Thus, the above scheme also caters, via the SBR jurisdiction, for efforts at harmonisation of

error codes and messages, in support of principle P.03.

Version: 2.2d Page 62

In order to allow for the possibility of local councils being involved in SBR in the future, all

agency code values commencing with “LCL” SHALL be reserved.

4.6.1.2. Severity Code

Items are categorised by severity, the options being Information, Warning or Error. To facilitate

efficient processing logic, the most severe category of item in a MessageEvent MUST be

duplicated as part of the MessageEvent structure in the MaximumSeverity field.

A MessageEvent that does not include any items with a severity of Error is considered to

indicate the successful initiation of the request. (In many instances, the completion of the

request will also have occurred prior to the generation of a response, but in some cases, there

may be follow up processing subsequent to the return of the response).

In the common situation of successful requests, the MessageEvent MAY contain a single item

with a severity of Information and a MaximumSeverity of Information. The example below shows

the minimum information that would need to be provided in this situation.

<MessageEvent>

 <Message.Event.MaximumSeverity.Code>Information</Message.Event.MaximumSeverity.Code>

 <MessageEventItems>

 <MessageEventItem>

 <Message.Event.Item.Error.Code>SBR.GEN.GEN.OK</Message.Event.Item.Error.Code>

 <Message.Event.Item.Severity.Code>Information</Message.Event.Item.Severity.Code>

 </MessageEventItem>

 </MessageEventItems>

</MessageEvent>

Figure 19: Minimal MessageEvent indicating success of the request

Conversely, in order to indicate failure of a request, the response MUST include a

MessageEvent with at least one item with a severity of Error. This will result in a value of Error

in the MaximumSeverity field. Where multiple logical lodgements are contained within a single

request message (for example PAYG Summaries or TFN Declarations), a severity of Error on

the response message MUST be interpreted as meaning that all logical lodgements within the

request have failed, even if the EventItem information only identifies problems with some of the

lodgements.

4.6.1.3. Descriptions

Descriptions on an item are intended to provide human readable text describing the error that

has occurred. At present, descriptions are only provided in English.

Markup MAY be included within the description, but must be escaped, since descriptions are

typed as strings (see the example below). Some platforms will automatically perform this

escaping based on the values assigned to the field, converting “<” to “<” for example.

At this stage, the only vocabulary of markup SHALL be XHTML. In addition, the only construct

that MUST be supported is hyperlinks, via tags, to support the ability to refer

business users to online resources.

Any unrecognised tags SHOULD be ignored and removed from the description. This will allow

the graceful introduction of other tags as the need arises.

Version: 2.2d Page 63

4.6.1.3.1. Short Description

Each item SHOULD include a short description, which provides a concise description of the

condition that has occurred. It is intended for use in visual components such as tool tips, and it

is thus RECOMMENDED that it be no longer than 100 characters including any parameter

values.

Given the suggested constraint on length, it is RECOMMENDED that markup only be used for

inclusion of a hyperlink in the short description.

4.6.1.3.2. Detailed Description

Where a more extensive explanation of a condition needs to be provided than that reasonably

contained within the short description, the event item MAY include a detailed description.

This document does not propose a limit on the length of the content of this field, recognising

that, in line with P.02, preference SHOULD be given to clarity of user understanding over

efficiency of message size.

An example of the use of the detailed description might be to provide the information for a

“More” button associated with the short description.

Where no detailed information is available, the detailed description SHOULD NOT be provided.

The short description SHOULD NOT be replicated verbatim in the detailed description.

4.6.1.3.3. Parameters

Item parameters support the insertion of dynamic information into descriptions. The location in

the description where a parameter SHOULD be inserted is represented as the identifier for the

parameter, surrounded by curly braces. Use of identifiers allows the parameters to be self-

documenting. Substitution of parameters SHOULD occur before any other interpretation of the

description occurs, for example before markup processing. Where a parameter reference uses

an identifier for a non-existent parameter, the parameter value SHOULD be assumed to be an

empty string.

Each parameter has a simple string as a value. Parameters MUST NOT be embedded within

parameters.

It should be noted that even where only English descriptions are provided, parameters in

combination with error codes allow client software to provide multiple language translations, or

to replace an agency provided message with one of their preference, while maintaining the

dynamic content from the original description.

Because the length of text provided by a parameter is limited, it is possible that the value of a

parameter being supplied by an agency may exceed this limit. In this case, an agency MAY

replace the parameter reference in the message descriptions with the actual value of the

parameter.

4.6.1.4. Locations

It is common practice in user interface design to highlight fields in which errors have occurred.

An item MAY thus include one or more locations, which allow client software to intelligently

indicate the scope of information affected by the item.

Version: 2.2d Page 64

If no locations are provided, the item is assumed to apply to the entire request transaction.

If locations with sequence numbers only are provided, the item applies to the associated

payload documents in the request transaction.

If at least one location includes a path, then all locations within the item SHOULD include a

path. In this case, the locations indicate one or more data fields affected by the item. In the

common case of a field validation failure, the associated item would have one location, which in

turn would have one sequence number and one location path.

4.6.1.4.1. Sequence Number

Each location MUST include a sequence number, which indicates to which payload document in

the incoming request the event item applies. The sequence number SHALL have the same

value as the sequence number for the payload document described in section 3.3.3.6.

4.6.1.4.2. Location Path Text

The location path field is included in the location to indicate, via an XPath expression, the

element in the incoming payload document to which the event item refers. It needs to be

interpreted in conjunction with the sequence number field, which identifies the particular payload

document in the incoming request to which the event item applies.

The XPath expression MUST be interpreted relative to the Business.Document.Instance.Text

container element for a given payload, and will assume the namespace mappings active within

this payload. Where possible, XPath expressions SHOULD uniquely identify elements using

their XBRL contextRef attribute (applicable to XRL payloads).

The figure below shows an example of an event, employing parameters to provide dynamic

content and indicating the field in error in the input XBRL document via a location.

<MessageEvent>

 <Message.Event.MaximumSeverity.Code>Error</Message.Event.MaximumSeverity.Code>

 <MessageEventItems>

 <MessageEventItem>

 <Message.Event.Item.Error.Code>SBR.GEN.GEN.INVALIDABN</Message.Event.Item.Error.Code>

 <Message.Event.Item.Severity.Code>Error</Message.Event.Item.Severity.Code>

 <Message.Event.Item.Short.Description>ABN {abn} is not

valid</Message.Event.Item.Short.Description>

 <Message.Event.Item.Detailed.Description>Please check the ABN to confirm that the

number is correct. See www.ato.gov.au for more

information</Message.Event.Item.Detailed.Description>

 <Parameters>

 <Parameter>

 <Message.Event.Item.Parameter.Identifier>url</Message.Event.Item.Parameter.Identifier>

 <Message.Event.Item.Parameter.Text>http://www.ato.gov.au/path/to/information</Message.Event.

Item.Parameter.Text>

 </Parameter>

 <Parameter>

 <Message.Event.Item.Parameter.Identifier>abn</Message.Event.Item.Parameter.Identifier>

 <Message.Event.Item.Parameter.Text>12345678901</Message.Event.Item.Parameter.Text>

 </Parameter>

 </Parameters>

 <Locations>

 <Location>

 <BusinessDocument.Sequence.Number>1</BusinessDocument.Sequence.Number>

 <Message.Event.Item.Location.Path.Text>/xbrli:xbrl/...

</Message.Event.Item.Location.Path.Text>

 </Location>

 </Locations>

 </MessageEventItem>

 </MessageEventItems>

</MessageEvent>

Version: 2.2d Page 65

Figure 20: MessageEvent indicating an ABN in the input was invalid

4.6.2. Providing Codes and Descriptions To Software Developers

SBR intends to supply software developers with lists of response messages concerning business

events. Each list, in the form of an XML document based on the Message Event structure (as

described in section 4.6.2.3 below), SHALL contain a representative sample of the response

messages that may be generated by an SBR participating agency. There is also a list of messages

identified as common across the SBR Program.

The lists may not be exhaustive, but SHOULD be representative. For each code, where applicable, the

list SHALL include the fields described in section 4.6.1.

In some cases, agencies are employing processing systems that add dynamic content into messages,

but the nature of these systems makes it impossible to include it in the way described in section

4.6.1.3.3. For these systems, the dynamic content will appear in responses as part of the static text of

the message. In order to indicate such situations in sample response messages, the parameter name

may be surrounded by square, rather than curly, brackets. For example, “[abn]” in a sample message

would be replaced in actual responses by the static text representing the value of the abn.

4.6.2.1. Collection of Agency Code Lists and Code Usage

Each agency SHALL provide a message list to record their codes and associated details. Any

rules documented within agency Message Implementation Guides (MIG) SHALL include the

code that will be produced in the event that the rule fails. Agency lists thus MUST include all

such codes as a minimum.

4.6.2.2. SBR Common Response Messages

To enable consistency with response messages the SBR program has defined a number of

common response messages.

4.6.2.2.1. Use of Parameters

Parameters provide a way for agreement to be reached on common codes and description

formats, while allowing a degree of agency variability. For instance, parameters might be used

to incorporate a URL specific to each agency in an otherwise standard message, such as

“You must be authorised to perform this request. Please refer to {desc} for further information”

In this case, each agency would provide, at run-time, the relevant values for the URL and

descriptive text of the hyperlink. Nevertheless, only a single code would be needed for what

would otherwise require multiple, agency specific codes.

4.6.2.3. Code List Format for Software Developers

The format of an agency message list consists of a container element “AgencyCodeList”

element, with attributes of the agency designation text (as provided as part of the Party element

in the Standard Business Document Header) and a version identifier. This root element contains

a single MessageEventItems child, the structure of this element being the same as that used to

Version: 2.2d Page 66

include items in an SBR Core Services response message. The use of the “parameter” element

is modified such that the content of the element provides further information as necessary about

the parameter, rather than the parameter value itself. The version identifier uses the

major.minor convention. The major version is aligned with the major version of the WSDLs,

while the minor version is increased whenever a new version of the code list is produced for an

agency.

Version: 2.2d Page 67

4.7. ERROR CODING EXAMPLE

The code below captures the general logic expected of a business application when processing a

message response. It is intended as informational, and should not be taken as normative.

Try

 Send request and get response

 if (MaximumSeverity = Error)

 For each (EventItem: i)

 Process based on descriptions and locations

 else

 // Success – check for warnings

 If (MaximumSeverity == Warning)

 For each (EventItem: i)

 Process based on descriptions and locations

 Else

 Ensure at least one item with Information severity

 Process SBDM

Catch (exception e)

 If (e.timeout)

 Queue request for resubmission with increasing delay between attempts

 Notify user – no further action required

 else

 Switch (Fault Code)

 Case Receiver:

 Switch case subcode

 Case sbr:Unavailable

 Queue request for resubmission with increasing delay

between attempts, using “AvailableAfter” information where present

 Notify user – no further action required

 Case sbr:InternalError

 Queue request for resubmission with increasing delay

between attempts

 Notify user

 Possible specific action based on subcode,

 e.g. log error, generate error report

 Case Sender:

 Case default:

 Report problem to software vendor capturing the subcode

 and reason

Version: 2.2d Page 68

5. SECURITY

This section will only describe the security aspects associated with the ‘message on the wire’ related

to authenticated services and is not applicable to anonymous service. It is assumed that the business

has already acquired their AUSkey from the Australian Business Register (ABR) and has installed it in

their software package. Details of the registration and certificate issuing process are provided on the

AUSkey website.

5.1. OVERVIEW

The main security interactions are shown below.

Figure 21: Security Interactions

• The business software presents their business certificate to the Security Token Service (STS), is

authenticated, and receives a session key and an encrypted token.

• The business software uses their certificate to sign the Standard Business Document Message

within each request, and incorporates this, together with the encrypted token from the STS into

the WS-Security header.

• The SBDM signature, the STS token and the entire SOAP body are signed using the session key

obtained from the STS. The complete SOAP message is then sent to the Core Service platform.

• The SBR Core Services platform decrypts the token and checks various aspects of the security

information provided.

• The agency identifies and authorises the business using data in the decrypted token, processes

the business message and returns a response.

• The business software receives the business response via the SBR Core Services platform.

Depending on the agency, the SBDM MAY be signed by the responding agency.

SBR Core Service

Platform
Agency

Business Software

Token.Request

Token.Response

Service.Request

Service.Response

Agency.Request

Agency.Response

Secure

Message

Sequence

Secure Token Server

Business

Certificate

SBR SDK

http://www.abr.gov.au/auskey

Version: 2.2d Page 69

The STS interaction (Token.Request and Token.Response) is an implementation of the standard Web

Service Protocol WS-Trust (http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html).

The SBR Core Services interaction (Service.Request and Service.Response) is an implementation of

the standard Web Service WS-Security protocol (http://www.oasis-

open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf)

The security token is an implementation of the standard SAML 2.0 protocol (http://saml.xml.org/saml-

specifications).

5.2. IMPLEMENTATION OPTIONS

The SBR program provides software developers with two implementation choices for the security

framework related to SBR Core Services:

• A “reference client” and sample applications which are part of the SBR Core Services SDK

(Software Developer Kit) provided by SBR for the corresponding platform. The reference client is

available in Java or .NET versions but sample applications are available for all three platforms

including C. Software developers SHOULD refer to the reference client and sample application

documentation for details on how to use them.

• Software developers who prefer to build their own implementation without dependencies on

the SBR Core Services reference client can use their preferred platforms to build client code to

support the WS-Trust, SAML2, and WS-Security protocols exposed by the STS and SBR core service

platforms.

The remainder of this section provides interface details for software developers who will build directly

to the STS / SBR Core Services interfaces without using the SBR Core Services SDK API.

5.3. SECURITY TOKEN SERVICE (STS)

In a typical WS-Trust scenario, a “relying party” (e.g. an SBR Core Service) specifies a security policy

that clients must satisfy. Clients may obtain an identity credential from a registration authority that is

not the same as the relying party. In the SBR case, the registration authority is the ABR. The STS

has a trust relationship with both the registration authority (ABR) and the relying party (Core Services).

A client that wishes to invoke a service offered by a relying party will normally:

• Request the security policy from the relying party – which is returned as a set of “claims”.

• Authenticate to the STS using a valid credential and provide the set of claims it requires to the

STS.

• The STS will provide and sign a set of assertions that validate the client identity.

• The client then passes these STS signed assertions to the original relying party service end-point

and is allowed (or not) to invoke the service.

• The STS can also provide a session key that is used to encrypt or sign the exchange with the

relying party.

In the SBR case, there is no need to request the security policy from Core Services because there is a

predefined set of claims that are valid across all participating agencies. These claims are listed in the

table below, and packaged with the SBR Core Services SDK.

Version: 2.2d Page 70

Therefore the WS-Trust interactions for SBR Core Services are just the STS Token.Request and

Token.Response shown in the figure below;

Figure 22: STS Request and Response Envelopes

In the Token.Request message, the client passes a set of SBR claims to the STS, with confidentiality

being provided using SSL. To indicate the source of the request, a timestamp is signed using the

business private key, along with an identifier of which relying party the token “AppliesTo”. The token

MUST use a “holder-of-key” subjectConfirmation.

The Security Token Service maintains meta-data that relates to a business credential and will return a

Token.Response that contains a set of signed assertions (the values associated with the claims),

packaged as a security token with a lifetime of 30 minutes. The STS also provides the “holder-of-key”

session key that can be used for any number of secure interactions with SBR Core Services until

expiry.

Within a Token.Request, claims may be marked optional. If a claim is marked optional, the STS will

return an assertion if it has a value for the claim and no assertion otherwise. If a claim is not marked

optional and the STS does not have a value for the claim, this error condition will be flagged by the

return of a SOAP fault rather than a Token.Response.

Token.Request

SignBusinessKey

Claims

Token.Response

Token EncCoreKey

Session Key

Message Data

Message Envelope

Business Key Core Key

Session Key

Timestamp

AppliesTo

Version: 2.2d Page 71

The table below lists the 16 claims that must be included in each request to the STS. It also shows, for

each type of credential offered for use in SBR, whether the resulting assertions must be present within

a token included in a request to Core Services.

Given the STS behaviour in terms of optionality of claims, and in order to simplify the logic necessary

to support both credential types, it is RECOMMENDED that all 16 claims be requested as optional in

each STS request, except for those in the table below where the claim is marked as mandatory for

both credential types. The latter claims SHOULD be marked as mandatory. An example is shown

below in section 5.3.1.

CLAIM URI DESCRIPTION ABR_User ABR_Device

http://vanguard.ebusiness.gov.au/200

8/06/identity/claims/abn

Business ABN Mandatory Mandatory

http://vanguard.ebusiness.gov.au/200

8/06/identity/claims/commonname

User full name (ABR_User)

Server name (ABR_Device)

Mandatory Mandatory

http://vanguard.ebusiness.gov.au/200

8/06/identity/claims/credentialtype

Credential Type

(ABR_User or ABR_Device)

Mandatory Mandatory

http://vanguard.ebusiness.gov.au/200

8/06/identity/claims/samlsubjectid

SAML subject ID (composite

global unique ID)

Mandatory Mandatory

http://vanguard.ebusiness.gov.au/200

8/06/identity/claims/fingerprint

SH1 hash of the business

certificate.

Mandatory Mandatory

http://vanguard.ebusiness.gov.au/200

8/06/identity/claims/sbr_personid

Business user ID (unique

serial within one business)

Mandatory Not

applicable

http://vanguard.ebusiness.gov.au/200

8/06/identity/claims/givennames

User given names Mandatory Not

applicable

http://schemas.xmlsoap.org/ws/2005/

05/identity/claims/surname

User family name Mandatory Not

applicable

http://schemas.xmlsoap.org/ws/2005/

05/identity/claims/emailaddress

User e-mail address Mandatory Not

applicable

http://vanguard.ebusiness.gov.au/200

8/06/identity/claims/credentialadminist

rator

Boolean indicator if user is

administrator

Mandatory Not

applicable

http://vanguard.ebusiness.gov.au/200

8/06/identity/claims/previoussubject

ID of any previous credential

subject ID (e.g. an ATO

certificate)

Optional Not

applicable

http://vanguard.ebusiness.gov.au/200

8/06/identity/claims/stalecrlminutes

Client credential was

checked against a Certificate

Revocation List that was

overdue for replacement by

Optional Optional

http://vanguard.ebusiness.gov.au/2008/06/identity/claims/commonname
http://vanguard.ebusiness.gov.au/2008/06/identity/claims/commonname
http://vanguard.ebusiness.gov.au/2008/06/identity/claims/credentialtype
http://vanguard.ebusiness.gov.au/2008/06/identity/claims/credentialtype
http://vanguard.ebusiness.gov.au/2008/06/identity/claims/fingerprint
http://vanguard.ebusiness.gov.au/2008/06/identity/claims/fingerprint
http://vanguard.ebusiness.gov.au/2008/06/identity/claims/givennames
http://vanguard.ebusiness.gov.au/2008/06/identity/claims/givennames
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname

Version: 2.2d Page 72

this many minutes.

http://vanguard.ebusiness.gov.au/200

8/06/identity/claims/subjectdn

User X.509 distinguished

name

Optional Optional

http://vanguard.ebusiness.gov.au/200

8/06/identity/claims/issuerdn

Issuer (ABR) X.509

distinguished name

Optional Optional

http://vanguard.ebusiness.gov.au/200

8/06/identity/claims/notafterdate

Certificate validity expiry date

time

Optional Optional

http://vanguard.ebusiness.gov.au/200

8/06/identity/claims/certificateserialnu

mber

Certificate serial number Optional Optional

Table 22: STS Claims

Note that the client software does not need to provide values for these claims. The Token.Request

message simply lists the claim URIs shown above and the STS will return the values as a set of

assertions within an encrypted token.

The provision of the STS WSDL and sample token request and token response envelopes is

discussed in section 7.

5.3.1. Creating the STS Request

This section defines the structure of the Token.Request message. The XML snippet below is an

example Token.Request sent to the STS. Note that the base64 data representing the business

certificate has been removed for readability.

<?xml version='1.0' encoding='utf-8'?>
<soapenv:Envelope xmlns:soapenv="http://www.w3.org/2003/05/soap-envelope">
 <soapenv:Header xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
soapenv:mustUnderstand="true">
 <wsu:Timestamp xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
wsu:Id="Timestamp-19714461">
 <wsu:Created>2009-10-12T04:02:23.890Z</wsu:Created>
 <wsu:Expires>2009-10-12T04:07:23.890Z</wsu:Expires>
 </wsu:Timestamp>
 <wsse:BinarySecurityToken xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd" EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#Base64Binary" ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"
wsu:Id="CertId-11658721"><!-- Binary data removed --></wsse:BinarySecurityToken>
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#" Id="Signature-620055">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />
 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />
 <ds:Reference URI="#Timestamp-19714461">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <ds:DigestValue>RUqAWdHk+v4Xkx+9Sw0HLVKijpE=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#id-3125250">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />
 </ds:Transforms>

http://vanguard.ebusiness.gov.au/2008/06/identity/claims/subjectdn
http://vanguard.ebusiness.gov.au/2008/06/identity/claims/subjectdn
http://vanguard.ebusiness.gov.au/2008/06/identity/claims/issuerdn
http://vanguard.ebusiness.gov.au/2008/06/identity/claims/issuerdn
http://vanguard.ebusiness.gov.au/2008/06/identity/claims/certificateserialnumber
http://vanguard.ebusiness.gov.au/2008/06/identity/claims/certificateserialnumber
http://vanguard.ebusiness.gov.au/2008/06/identity/claims/certificateserialnumber

Version: 2.2d Page 73

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <ds:DigestValue>8M8SCNohyZHQEhzru8hIZzIudu8=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>
ZHSrVAqDjlZzLdFaz9gEnXFuvpf/q3rQ9XWI3Bu9ZtVkuubhvXXnQo1zeIyiY84uiS/J5lLMpqTN
dQv5JRWZk6Y6XzrEQgfofp5VSmDeyNgVXJtm2FFePnYq7OTZerA3c7jhQO9xc0MpNLfs8NX7zCnI
UNbhgeKR6LFZG8EW1hU=
 </ds:SignatureValue>
 <ds:KeyInfo Id="KeyId-15834478">
 <wsse:SecurityTokenReference xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-utility-1.0.xsd" wsu:Id="STRId-7789321">
 <wsse:Reference URI="#CertId-11658721" ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-x509-token-profile-1.0#X509v3" />
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 <wsa:To xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" wsu:Id="id-
3125250">https://thirdparty.authentication.business.gov.au/R3.0/vanguard/S007v1.1/service.svc</wsa:To>
 <wsa:MessageID>urn:uuid:CC8BEAE32759FDD5821255320143481</wsa:MessageID>
 <wsa:Action>http://docs.oasis-open.org/ws-sx/ws-trust/200512/RST/Issue</wsa:Action>
 </soapenv:Header>
 <soapenv:Body>
 <wst:RequestSecurityToken xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 <RequestType xmlns="http://docs.oasis-open.org/ws-sx/ws-trust/200512">http://docs.oasis-open.org/ws-sx/ws-
trust/200512/Issue</RequestType>
 <wsp:AppliesTo xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <EndpointReference xmlns="http://www.w3.org/2005/08/addressing">
 <Address>https://test.sbr.gov.au/services</Address>
 </EndpointReference>
 </wsp:AppliesTo>
 <TokenType xmlns="http://docs.oasis-open.org/ws-sx/ws-trust/200512">http://docs.oasis-open.org/wss/oasis-wss-
saml-token-profile-1.1#SAMLV2.0</TokenType>
 <Claims xmlns="http://docs.oasis-open.org/ws-sx/ws-trust/200512"
xmlns:i="http://schemas.xmlsoap.org/ws/2005/05/identity" Dialect="http://schemas.xmlsoap.org/ws/2005/05/identity">
 <i:ClaimType Optional="false" Uri="http://vanguard.ebusiness.gov.au/2008/06/identity/claims/abn" />
 <i:ClaimType Optional="false" Uri="http://vanguard.ebusiness.gov.au/2008/06/identity/claims/commonname" />
 <i:ClaimType Optional="false" Uri="http://vanguard.ebusiness.gov.au/2008/06/identity/claims/credentialtype" />
 <i:ClaimType Optional="false" Uri="http://vanguard.ebusiness.gov.au/2008/06/identity/claims/samlsubjectid" />
 <i:ClaimType Optional="false" Uri="http://vanguard.ebusiness.gov.au/2008/06/identity/claims/fingerprint" />
 <i:ClaimType Optional="true" Uri="http://vanguard.ebusiness.gov.au/2008/06/identity/claims/sbr_personid" />
 <i:ClaimType Optional="true" Uri="http://vanguard.ebusiness.gov.au/2008/06/identity/claims/givennames" />
 <i:ClaimType Optional="true" Uri="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname" />
 <i:ClaimType Optional="true" Uri="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress" />
 <i:ClaimType Optional="true"
Uri="http://vanguard.ebusiness.gov.au/2008/06/identity/claims/credentialadministrator" />
 <i:ClaimType Optional="true" Uri="http://vanguard.ebusiness.gov.au/2008/06/identity/claims/stalecrlminutes" />
 <i:ClaimType Optional="true" Uri="http://vanguard.ebusiness.gov.au/2008/06/identity/claims/subjectdn" />
 <i:ClaimType Optional="true" Uri="http://vanguard.ebusiness.gov.au/2008/06/identity/claims/issuerdn" />
 <i:ClaimType Optional="true" Uri="http://vanguard.ebusiness.gov.au/2008/06/identity/claims/notafterdate" />
 <i:ClaimType Optional="true"
Uri="http://vanguard.ebusiness.gov.au/2008/06/identity/claims/certificateserialnumber" />
 <i:ClaimType Optional="true" Uri="http://vanguard.ebusiness.gov.au/2008/06/identity/claims/previoussubject" />
 </Claims>
 <Lifetime xmlns="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 <wsu:Created xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
1.0.xsd">2009-10-12T04:02:22.984Z</wsu:Created>
 <wsu:Expires xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
1.0.xsd">2009-10-12T04:32:22.984Z</wsu:Expires>
 </Lifetime>
 <KeyType xmlns="http://docs.oasis-open.org/ws-sx/ws-trust/200512">http://docs.oasis-open.org/ws-sx/ws-
trust/200512/SymmetricKey</KeyType>
 <KeySize xmlns="http://docs.oasis-open.org/ws-sx/ws-trust/200512">512</KeySize>
 </wst:RequestSecurityToken>
 </soapenv:Body>
</soapenv:Envelope>

Figure 23: Token.Request Sample Message

The Token.Request message includes the following elements:

Version: 2.2d Page 74

 The soapenv:Header element contains the WS-Addressing elements that define the location end-

point of the STS, a unique message ID, and the requested action (to Issue a token).

 The <wst:RequestSecurityToken> element in the SOAP Body defines the specifics of the request to

the STS and includes the following key elements:

 The <wsp:AppliesTo> element defines the URL of the service that requires the SAML token. It

can be scoped either to individual services within SBR Core Services (in which case a token

will be needed for each service), or at a point in the path one above, in which case a single

token can be used across the four services. The latter approach SHOULD be used (as shown

in the example) as it minimises the number of token requests needed.

 The <TokenType> element defines the required token as a SAML 2.0 token.

 The <Claims> element and all the related <i:ClaimType> elements specify exactly which identity

assertions the STS is to include in the Token.Response message (as encrypted assertions).

 The optional <Lifetime> element defines the required lifetime of the session key to be returned

by the STS. Note that the STS may enforce a maximum allowed validity period and so it is

possible that the lifetime actually provided may be less than the lifetime requested. The

lifetime for an SBR Core Services session key is set to 30 minutes.

 The <KeyType> element and <KeySize> element specify that the returned session key SHOULD

be a 512 bit symmetric key.

The time on the system requesting the token MUST NOT differ from that of the STS Service by more

than 5 minutes.

5.3.2. Processing the STS Response

This section provides guidelines on how client software should process the security token and session

key that is returned from the STS in the Token.Response message.

The XML snippet below is an example response from the STS. Note that the base64 data representing

the encrypted token has been removed for readability.

<?xml version='1.0' encoding='utf-8'?>
<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope" xmlns:u="http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-utility-1.0.xsd" xmlns:a="http://www.w3.org/2005/08/addressing">
 <s:Header>
 <a:Action s:mustUnderstand="1">http://docs.oasis-open.org/ws-sx/ws-trust/200512/RSTRC/IssueFinal</a:Action>
 <a:RelatesTo>urn:uuid:CC8BEAE32759FDD5821255320143481</a:RelatesTo>
 <ActivityId xmlns="http://schemas.microsoft.com/2004/09/ServiceModel/Diagnostics" CorrelationId="6da8a0dc-89cf-
4210-9d6b-36b16ffb3788">00000000-0000-0000-0000-000000000000</ActivityId>
 <o:Security xmlns:o="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
s:mustUnderstand="1">
 <u:Timestamp u:Id="_0">
 <u:Created>2009-10-12T04:02:26.742Z</u:Created>
 <u:Expires>2009-10-12T04:07:26.742Z</u:Expires>
 </u:Timestamp>
 </o:Security>
 </s:Header>
 <s:Body>
 <trust:RequestSecurityTokenResponseCollection xmlns:trust="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 <trust:RequestSecurityTokenResponse>
 <trust:KeySize>512</trust:KeySize>
 <trust:Lifetime>
 <wsu:Created xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
1.0.xsd">2009-10-12T04:02:26.454Z</wsu:Created>
 <wsu:Expires xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
1.0.xsd">2009-10-12T04:32:22.984Z</wsu:Expires>

Version: 2.2d Page 75

 </trust:Lifetime>
 <wsp:AppliesTo xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <a:EndpointReference>
 <a:Address>https://test.sbr.gov.au/services</a:Address>
 </a:EndpointReference>
 </wsp:AppliesTo>
 <trust:RequestedSecurityToken>
 <EncryptedAssertion xmlns="urn:oasis:names:tc:SAML:2.0:assertion">
 <xenc:EncryptedData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
 <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-cbc" />
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <e:EncryptedKey xmlns:e="http://www.w3.org/2001/04/xmlenc#">
 <e:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 </e:EncryptionMethod>
 <KeyInfo>
 <o:SecurityTokenReference xmlns:o="http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-secext-1.0.xsd">
 <X509Data>
 <X509IssuerSerial>
 <X509IssuerName>CN=Australian Government Notary
Services OCA, OU=For Development purposes ONLY, OU=Australian Authentication and Notary Services, O=Australian
Government, C=AU</X509IssuerName>

 <X509SerialNumber>116425329959729741023280816821386492610</X509SerialNumber>
 </X509IssuerSerial>
 </X509Data>
 </o:SecurityTokenReference>
 </KeyInfo>
 <e:CipherData>

 <e:CipherValue>G10F8BxPQNcshpWwiPgvoofH74IsiNpL1h9bP4pZPHwyxrlO+xirH5XAMqi+BkTCBbFojAEJaYIvu9NIqF
Z8THUZVIbhjBge6miNrsx+kRz70+QJKv6F9WmCmH+rQgWNi1T1MjEP9xIcVLcZDzvFBPEJlvK13KLV5Hoimxp/8F8=</e:Cip
herValue>
 </e:CipherData>
 </e:EncryptedKey>
 </KeyInfo>
 <xenc:CipherData>
 <xenc:CipherValue><!-- Binary data removed --></xenc:CipherValue>
 </xenc:CipherData>
 </xenc:EncryptedData>
 </EncryptedAssertion>
 </trust:RequestedSecurityToken>
 <trust:RequestedProofToken>

 <trust:BinarySecret>DolCv6k0OrHRKqMZa5AgH28SC7ntQN1EgOXybaYq9GYh3ppK6gfpuHRR4NplJo2sEcnQ6+djWRs
8orObzXDclQ==</trust:BinarySecret>
 </trust:RequestedProofToken>
 <trust:RequestedAttachedReference>
 <SecurityTokenReference xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-secext-1.0.xsd" xmlns:b="http://docs.oasis-open.org/wss/oasis-wss-wssecurity-secext-1.1.xsd"
b:TokenType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0">
 <KeyIdentifier ValueType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-
1.1#SAMLID">_d5511ae3-5ab6-474a-b58f-5752b847ab15</KeyIdentifier>
 </SecurityTokenReference>
 </trust:RequestedAttachedReference>
 <trust:RequestedUnattachedReference>
 <SecurityTokenReference xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
wssecurity-secext-1.0.xsd" xmlns:b="http://docs.oasis-open.org/wss/oasis-wss-wssecurity-secext-1.1.xsd"
b:TokenType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0">
 <KeyIdentifier ValueType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-
1.1#SAMLID">_d5511ae3-5ab6-474a-b58f-5752b847ab15</KeyIdentifier>
 </SecurityTokenReference>
 </trust:RequestedUnattachedReference>
 <trust:TokenType>http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-
1.1#SAMLV2.0</trust:TokenType>
 <trust:RequestType>http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue</trust:RequestType>
 <trust:KeyType>http://docs.oasis-open.org/ws-sx/ws-trust/200512/SymmetricKey</trust:KeyType>
 </trust:RequestSecurityTokenResponse>
 </trust:RequestSecurityTokenResponseCollection>
 </s:Body>

</s:Envelope>

Version: 2.2d Page 76

Figure 24: Token.Response

The token response includes the following elements:

a. The <trust:RequestSecurityTokenResponseCollection> is the envelope element that contains all

the token data. It contains one <trust:RequestSecurityTokenResponse>.

b. The <trust:KeySize> element defines the key size of the symmetric session key. The

session key is used to sign envelopes sent to SBR Core Services. This is for

information only.

c. The <trust:Lifetime> element defines the validity period for the symmetric session key.

The client should request a new session key before expiry in order to continue any

interactions with SBR Core Services.

d. The <wsp:AppliesTo> element is the identifier for the service end point (in this case the

SBR Core Services platform) that is the “relying party” in the WS-Trust interaction.

This is for information only.

e. The <trust:RequestedSecurityToken> element contains the <EncryptedAssertion> structure.

The client should insert the entire <EncryptedAssertion> structure into the SOAP

header of the SBR Core Services Service.Request envelope as described in 5.5.

This element contains all the identity claims (encrypted) together with the necessary

key reference information that allows SBR Core Services to decrypt the claims.

f. The <trust:RequestedProofToken> element contains the symmetric key that is used by the

client to sign interactions with SBR Core Services until it expires and must be

renewed.

g. The <trust:RequestedAttachedReference> element contains the unique identifier for the

symmetric session key (the <trust:RequestedProofToken>). This is not currently used.

h. The <trust:TokenType> (SAML2), <trust:RequestType> (Issue), and <trust:KeyType>

(Symmetric) elements contain informational data about the nature of the

Token.Response. No specific action is required from client software.

5.3.3. STS Faults

(Information in this section has been extracted from section 4 of the VANguard S007 Security Token

Service Technical Service Contract, Contract Version V3.0, Document Revision Number 1.7)

Errors are returned from the STS service via the SOAP 1.2 fault mechanism.

It should be noted that the WS-Trust 1.3 specification requires all faults to use a Code of “env:Sender”

irrespective of the source of the error. While inconsistent with the description for the Code field in the

SOAP 1.2 specification, faults generated by the STS nonetheless comply with the requirements of the

WS-Trust specification. When processing a fault from the STS, the footnoted codes below should be

processed as if they were “env:Receiver” faults.

5.3.3.1. BusinessContext Element

This element provides structured detail regarding the nature of the fault. The information is

reproduced in the fault Reason/Text element.

Version: 2.2d Page 77

5.3.3.2. EventCode Element

This element contains the VANguard specific error code. The table below documents the

possible fault codes that can be received from the Security Token Service. The code is available

in the subcode tree consistent with the approach used by Core Services faults, but is also

available as part of the information in the BusinessContext element.

5.3.3.3. EventSeverity Element

This element contains the severity of the error. The value will be one of Normal, Warning,

Severe or Critical. This element may be used for diagnostic and debugging purposes.

It should be noted that, regardless of the value of this element, the fact that a fault has been

returned means that a token has not been provided, and submission to SBR Core Services

cannot proceed until the source of the error has been rectified.

5.3.3.4. EventDescription Element

This element provides a verbose, human readable description of the fault, and complements

that provided in the Reason/Text element. It should be used for diagnostic and debugging

purposes.

5.3.3.5. UserAdvice

This element provides advice targeted at a non-technical user. It may assist in resolving the

conditions that produced the fault.

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 78

Fault/Code

/Value

Fault/Code/Subcode/Value Vanguard

SubCodes

Reason for Error

env:Sender wst:InvalidRequest E2183 A mandatory request was made for an unrecognised claim.

env:Sender wst:FailedAuthentication E2014 The credential supplied by the initiating party has been revoked.

E2169 The credential supplied by the initiating party is not recognized.

E2015 The credential supplied by the initiating party has expired.

E2017 The validity start date of the credential supplied by the initiating party is in the future.

E2029 The credential supplied by the initiating party could not be processed and may be corrupt.

E2020 The Credential Authority that issued the credential supplied by the initiating party is not

recognized.

E2180 No usage policy for the credential supplied could be found. This would occur if a certificate that

was valid but not supported by the STS was presented.

env:Sender wst:RequestFailed E2003 The relying party specified in the AppliesTo element is not recognized.

E1001
2

E1003
2

E1004
2

The request could not be satisfied due to an internal VANguard error.

E2001 The token type specified in the request was not recognised. Only SAML2.0 tokens should be

requested.

E2001 An unknown request type was encountered in the message. Typically the request type should

be: http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue

E2190
1
 Claim data could not be found due to an internal VANguard error. Attempt the request again.

E2182 A mandatory claim specified in the request could not be provided. Check the claim types being

specified in the request.

env:Sender wst:MissingAppliesTo E2001 The AppliesTo element of the RST was not supplied. This element must be supplied in any

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 79

request to the STS.

env:Sender wsse:UnsupportedSecurityToken An unsupported token was provided.

env:Sender wsse:UnsupportedAlgorithm An unsupported signature or encryption algorithm was used.

env:Sender wsse:InvalidSecurity An error was discovered processing the <wsse:Security> header.

env:Sender wsse:InvalidSecurityToken An invalid security token was provided.

env:Sender wsse:FailedAuthentication The security token could not be authenticated or authorized.

Table 23: STS Fault Codes

1
The treatment of errors of this type SHOULD be the same as SBR Core Services Unavailable - see section 4.5.3.2.

2
The treatment of errors of this type SHOULD be the same as SBR Core Services Internal Errors - see section 4.5.3.3.

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 80 Page 80

The figure below shows an example of a fault returned from the Security Token Service.

<?xml version="1.0" ?>

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"

xmlns:a="http://www.w3.org/2005/08/addressing">

<s:Header>

<a:Action s:mustUnderstand="1">http://www.w3.org/2005/08/addressing/soap/fault</a:Action>

<a:RelatesTo>urn:uuid:dd729e3e-7c97-4515-814a-980564ab48c8</a:RelatesTo>

</s:Header>

<s:Body>

<s:Fault>

<s:Code>

<s:Value>s:Sender</s:Value>

<s:Subcode>

<s:Value xmlns:a="http://docs.oasis-open.org/ws-sx/ws-trust/200512">

a:FailedAuthentication</s:Value>

 <s:Subcode>

 <s:Value xmlns:v=" http://vanguard.business.gov.au/2009/02">v:E2015</s:Value>

 </s:Subcode>

</s:Subcode>

</s:Code>

<s:Reason>

<s:Text xml:lang="en-AU"> The Initiating Party Certificate (Issuer:CN=Test Australian Business

Register CA, OU=Certification Authority, O=Australian Business Register, C=AU ,

SerialNumber:00CD) had a status of 'Expired.'. Event Code: [E2015]. Event Severity: [Normal]. Event

Description: [Business User certificate expired on [25/04/2009 12:02:56 AM].]. User Advice: [Advise

Business User that their certificate has expired and to contact the issuing CA to apply for a new

certificate.]. Agency Reference: []. VANguard Reference: []. Transaction Id: [].</s:Text>

</s:Reason>

<s:Detail>

<BusinessContext xmlns="http://vanguard.business.gov.au/2009/02">

<EventCode>E2015</EventCode>

<EventSeverity>Normal</EventSeverity>

<EventDescription> The Initiating Party Certificate (Issuer:CN=Test Australian Business Register

CA, OU=Certification Authority, O=Australian Business Register, C=AU , SerialNumber:00CD)

had a status of 'Expired.'.</EventDescription>

<UserAdvice> Advise Business User that their certificate has expired and to contact the issuing

CA to apply for a new certificate.</UserAdvice>

</BusinessContext>

</s:Detail>

</s:Fault>

</s:Body>

</s:Envelope>

Figure 25: SOAP Fault indicating presentation of an expired credential to the STS

NOTE: The inclusion of application specific processing detail within the Fault/Reason/Text element is

deprecated and may be removed in future versions. Developers SHOULD NOT rely on parsing this

field and instead SHOULD use the Fault/Code tree or Fault/Detail element to obtain any VANguard

specific data.

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 81

5.4. SECURE MESSAGING

SBR Core Web Service Security has the following goals:

• To ensure confidentiality of business data. This is achieved through transport layer security

(SSL).

• To ensure tamper proofing and non-repudiation of origin for business reports. This is achieved

through a digital signature of the business payload using the business certificate.

• To support identification and authentication of business users independent of government

agency. This is supported through the STS call and SAML assertions within the encrypted token.

• To support non-repudiation of receipt by government agencies. This is achieved through receipt

information in the lodgement response or optional agency digital signatures on the response

message.

The message security implementation employs standards defined in the WS-I Basic Security Profile

v1.1.

The conceptual security structure of any SBR Core Services request and response is shown in the

figure below using XBRL as a sample payload type.

Figure 26: SBR Core Services Secure Messaging

Service.Request

SignSessionKey

Token EncCoreKey

Req SignBusinessKey

SBDH

XBRLFromBusiness

Service.Response

Resp SignAgencykey

SBDH

XBRLFromAgency

Message Data

Message Envelope

Business Key

Agency KeyCore Key

Session Key

Version: 2.2d Page 82

The Service.Request message envelope includes:

 In the SOAP header;
o The encrypted SAML token exactly as received from the STS.
o A digital signature of the SBDM (SBDH plus payload) using the business digital

certificate.
o A digital signature of the SOAP Body plus the SAML token using the session key

received from the STS.

 In the SOAP Body, the SBDM (Standard Business Document Message) which contains;
o The SBDH (Standard Business Document Header)
o Any number of business documents with payloads in supported format
o Any number of binary attachments.

The Service.Response message envelope includes:

 In the SOAP header;
o An optional digital signature of the response message SBDM (in the SOAP body)

using the Agency key.

 In the SOAP Body the SBDM (Standard Business Document Message) which contains;
o The SBDH (Standard Business Document Header)
o Any number of business documents with payloads in supported format
o Any number of binary attachments.

The provision of the WSDLs for all SBR Core web services together with sample request and

response envelopes is discussed in section 7.

5.5. SIGNATURE STRUCTURES

The sample envelope below provides an example of the SBR Core Services security header

applicable to authenticated services. Note that carriage returns have been inserted and Base64

strings have been truncated for readability.

The SOAP header contains one <wsse:Security> structure. This structure contains four main sub

components:

 A <saml2:EncryptedAssertion> that carries identity information for the agency. This

information is provided by the STS and forwarded unchanged to the agency.

 A <wsse:BinarySecurityToken> that carries the business certificate. This is used by the

agency to validate the document signature.

 A <ds:Signature id=”signed_sbdm_id”> element that carries the signature of the SBDM and

the business certificate, and is signed with the business certificate. This signature is for non-

repudiation of origin.

 A <ds:Signature> element that carries the enveloping signature of the SOAP Body, the SAML

Token, and the business document signature. This signature links the business document to

the SAML identity token.

All these structures are described in more detail in subsequent sections.

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 83

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soap:Header>
 <wsse:Security
 soap:MustUnderstand="1"
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <saml2:EncryptedAssertion
 wsu:Id="assertion_id"
 xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <xenc:EncryptedData
 xmlns="urn:oasis:names:tc:SAML:2.0:assertion"
 xmlns:a="http://www.w3.org/2005/08/addressing"
 xmlns:s="http://www.w3.org/2003/05/soap-envelope"
 xmlns:trust="http://docs.oasis-open.org/ws-sx/ws-trust/200512"
 xmlns:u="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
 <xenc:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-cbc"/>
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <e:EncryptedKey xmlns:e="http://www.w3.org/2001/04/xmlenc#">
 <e:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 </e:EncryptionMethod>
 <KeyInfo>
 <o:SecurityTokenReference
 xmlns:o="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <X509Data>
 <X509IssuerSerial>
 <X509IssuerName>
 CN=Australian Government Notary Services OCA,
 OU=For Development purposes ONLY,
 OU=Australian Authentication and Notary Services,
 O=Australian Government, C=AU
 </X509IssuerName>
 <X509SerialNumber>116425329959729741023280816821386492610
 </X509SerialNumber>
 </X509IssuerSerial>
 </X509Data>
 </o:SecurityTokenReference>
 </KeyInfo>
 <e:CipherData>
 <e:CipherValue> TdTH/IV7gccbRW2PWou/Cch7P8g8aOqjy35W9nyreTwE=</e:CipherValue>
 </e:CipherData>
 </e:EncryptedKey>
 </KeyInfo>
 <xenc:CipherData>
 <xenc:CipherValue> / +euKyWoJmES +ghWa/hnSkMPvHQTn6B0sSSTAVJu5c=</xenc:CipherValue>
 </xenc:CipherData>
 </xenc:EncryptedData>
 </saml2:EncryptedAssertion>
 <wsse:BinarySecurityToken
 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary"
 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"
 wsu:Id="BinarySecurityToken-78bd05bf-80de-4bbf-9084-8fb3ee78f423">
 MIIEHDCCAwSgAwIBAgICCkMwDQYJKoZIhvcNAQEFBQAwgYUxCzAJB
 </wsse:BinarySecurityToken>
 <ds:Signature Id="signed_sbdm_id" xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo Id="signedInfo-eac65786-48f7-499b-a688-b1328de4ef9a">
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ds:Reference URI="#sbdm_id">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>kvKBax6HB1cVffej7WggalQ8DM4=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#BinarySecurityToken-78bd05bf-80de-4bbf-9084-8fb3ee78f423">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>R3KAVHwhs7kRpwRG6WrPnOEomCo=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue Id="signatureValue-46341d8d-e8b4-4e83-85e8-47dc6539fe77">
 iawKJTf1/elSjy3aX0mhJ+A0ROQp2mgkeogwD5tsT/TPIcNGgmJOCw7cx6YmDDJDBzwMVbrVkCyY

Version: 2.2d Page 84

 mDwJW1a/T7hxW+/WbaA8t0rLE0IjPuxUDzCzUJdZx/KJy5KGt8GVZ8n6k0BSB8hCeF444Ircggxv
 05NaSZ8DbopHUuQ6hNk=</ds:SignatureValue>
 <ds:KeyInfo Id="KeyInfo-f4a3af05-89be-444d-8d91-36c66f23f222">
 <wsse:SecurityTokenReference>
 <wsse:Reference
 URI="#BinarySecurityToken-78bd05bf-80de-4bbf-9084-8fb3ee78f423"
 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"/>
 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 </ds:Signature>
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo>
 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1"/>
 <ds:Reference URI="#signed_sbdm_id">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>v0dxw6ZPMBV/Pjs6dXUrJb5KMVo=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#soapbody_id">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>9Yrzsq8dVHJItSzvyuOLK6pUxWY=</ds:DigestValue>
 </ds:Reference>
 <ds:Reference URI="#assertion_id">
 <ds:Transforms>
 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </ds:Transforms>
 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ds:DigestValue>/MmViMAR3/2gmJcXh6JQivjn86o=</ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>
 <ds:SignatureValue>aNuW8eO5gWKAMDDP+45iP4XkMNY=</ds:SignatureValue>
 </ds:Signature>
 </wsse:Security>
 </soap:Header>
 <soap:Body wsu:Id="soapbody_id">
 <sbr:RequestPreLodgeReport
 xmlns="http://sbr.gov.au/comn/sbdm.02.data"
 xmlns:sbr="http://sbr.gov.au/comn/prelodge.02.service"
 xmlns:xmime="http://www.w3.org/2005/05/xmlmime">
 <StandardBusinessDocumentMessage wsu:Id="sbdm_id">
 <StandardBusinessDocumentHeader>
 <Message.Type.Text>message.ping</Message.Type.Text>
 <MessageTimestamps>
 <MessageTimestamp>
 <Message.Timestamp.Generation.Datetime>2009-03-25T13:53:48.234Z
 </Message.Timestamp.Generation.Datetime>
 <Message.Timestamp.GenerationSource.Code>BusinessEntity
 </Message.Timestamp.GenerationSource.Code>
 </MessageTimestamp>
 </MessageTimestamps>
 <Receiver>
 <IdentificationDetails.IdentifierDesignation.Text>sro.vic.gov.au
 </IdentificationDetails.IdentifierDesignation.Text>
 <IdentificationDetails.IdentifierName.Text>AgencyInternetDomainName
 </IdentificationDetails.IdentifierName.Text>
 <Party.Type.Code>GovernmentAgency</Party.Type.Code>
 </Receiver>
 <SoftwareInformation>
 <OrganisationNameDetails.OrganisationalName.Text>My Accounting Pty Ltd
 </OrganisationNameDetails.OrganisationalName.Text>
 <SoftwareInformation.ProductName.Text>Success!</SoftwareInformation.ProductName.Text>
 <SoftwareInformation.ProductVersion.Text>12.34.0.56</SoftwareInformation.ProductVersion.Text>
 </SoftwareInformation>
 <BusinessDocuments>
 <BusinessDocument>
 <BusinessDocument.Sequence.Number>1</BusinessDocument.Sequence.Number>
 <BusinessDocument.Creation.Datetime>2009-03-25T13:53:46</BusinessDocument.Creation.Datetime>
 <BusinessDocument.ValidationUniformResourceIdentifier.Text>
 http://sbr.gov.au/rprt/asic/t33/t33.declare.lodge.200903.report
 </BusinessDocument.ValidationUniformResourceIdentifier.Text>

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 85

 <BusinessDocument.BusinessGeneratedIdentifier.Text>??23465789-WERTZ-5%
 </BusinessDocument.BusinessGeneratedIdentifier.Text>
 <Attachments>
 <Attachment>
 <Message.Attachment.Sequence.Number>1</Message.Attachment.Sequence.Number>
 <Message.Attachment.FileName.Text>200809 Annual Report.pdf
 </Message.Attachment.FileName.Text>
 <Message.Attachment.Description.Text>Annual report for the 2008/09 year
 </Message.Attachment.Description.Text>
 </Attachment>
 </Attachments>
 </BusinessDocument>
 </BusinessDocuments>
 </StandardBusinessDocumentHeader>
 <StandardBusinessDocumentBody>
 <BusinessDocumentInstances>
 <BusinessDocumentInstance>
 <BusinessDocument.Sequence.Number>1</BusinessDocument.Sequence.Number>
 <BusinessDocument.Instance.Text>
 <xbrli:xbrl xmlns:xbrli=”http://www.xbrl.org/2003/instance”>
 insert remainder of XBRL document here
 </xbrli:xbrl>
 </BusinessDocument.Instance.Text>
 </BusinessDocumentInstance>
 </BusinessDocumentInstances>
 <AttachmentInstances>
 <AttachmentInstance>
 <Message.Attachment.Sequence.Number>1</Message.Attachment.Sequence.Number>
 <Message.Attachment.Instance.BinaryObject xmime:contentType="application/pdf">
 UjBsR09EbGhjZ0dTQUxNQUFBUUNBRU1tQ1p0dU1GUXhEUzhi
 </Message.Attachment.Instance.BinaryObject>
 </AttachmentInstance>
 </AttachmentInstances>
 </StandardBusinessDocumentBody>
 </StandardBusinessDocumentMessage>
 </sbr:RequestPreLodgeReport>
 </soap:Body>
</soap:Envelope>

Figure 27: Sample Security Header

5.5.1. Identity Token <saml2:EncryptedAssertion>

This structure contains the list of assertions that provide identity information to the Agency. The actual

assertions are represented as an encrypted string contained in the <xenc:CipherValue> element near the

end of the structure. The remainder of the elements provide the agency with the necessary data to

decrypt the assertions:

 The assertions are encrypted with a symmetric key that must be passed to the agency. The

symmetric key is itself encrypted using the public key of the agency. The <e:CipherValue>

element just above the encrypted assertions contains the encrypted symmetric key.

 The <o:SecurityTokenReference element provides the id reference of the public key used to encrypt

the symmetric key. The agency must use the corresponding private key to decrypt the

symmetric key. The agency can then use the decrypted symmetric key to decrypt the identity

assertions.

 The encryption algorithm for the assertions is AES-256 (symmetric key encryption). The

encryption algorithm for the symmetric key is RSA (asymmetric key encryption).

The structure is part of the Token.Response from the STS and can be inserted into the

Service.Request security header without change.

Version: 2.2d Page 86

5.5.2. Business Certificate <wsse:BinarySecurityToken>

This structure contains the digital certificate of the business. The certificate is encoded as a base64

string and is identified using the attribute wsu:Id="BinarySecurityToken-78bd05bf-80de-4bbf-9084-8fb3ee78f423".

The agency will use the public key contained in this certificate to validate the business document

signature.

5.5.3. Document Signature <ds:Signature id=”signed_sbdm_id”>

This structure contains the digital signature of the business document. There are three main sub-

structures:

 The <ds:SignedInfo element identified the parts of the SOAP envelope that are signed. These

parts are referenced using the ds:Reference URI elements that locate elements within the

envelope identified by a wsu:id. In the case of the document signature, the signed parts are

the SBDM (<ds:Reference URI="#sbdm_id">) and the business certificate (<ds:Reference

URI="#BinarySecurityToken-78bd05bf-80de-4bbf-9084-8fb3ee78f423">).

 The <ds:SignatureValue element contains the actual digital signature.

 The <ds:KeyInfo element contains the reference to the certificate used to create the signature.

In this case the certificate is identified by reference to the business certificate described in the

previous section using the <wsse:Reference URI="#BinarySecurityToken-78bd05bf-80de-4bbf-9084-

8fb3ee78f423" element.

5.5.4. Envelope Signature <ds:Signature>

This structure contains the envelope signature created using the symmetric key provided by the STS.

There are two sub-structures:

 The <ds:SignedInfo element identified the parts of the SOAP envelope that are signed. These

parts are referenced using the ds:Reference URI elements that locate elements within the

envelope identified by a wsu:id. In the case of the envelope signature, the signed parts are

the business document signature (<ds:Reference URI="#signed_sbdm_id">), the SOAP Body

(<ds:Reference URI="#soapbody_id">), and the encrypted SAML Token (<ds:Reference

URI="#assertion_id">).

 The <ds:SignatureValue element contains the actual digital signature.

There is no <ds:KeyInfo> element because this signature is created using the STS session key. The

encrypted session key is provided for the agency within the encrypted assertions.

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 87

6. TESTING

6.1. OVERVIEW

SBR Core Services offers several options to assist software developers in the testing of their products,

allowing a software developer to “step up” from basic tests to more sophisticated tests. The options

are

1. Network connectivity testing

2. Message connectivity testing

3. Report testing.

Further explanation of these options is provided in subsequent sections.

6.1.1. Service End Points

The following table documents the various end points at which the services described in section 2.2.1

are available.

There are two environments to which software developers have access, one for testing and one for

production submission of reports to agencies. The external vendor testing environment (EVTE) offers

end points supporting different levels of testing as shown below. Network and message connectivity

tests may also be performed in the production environment as part of any diagnostic functions within a

software package.

Version: 2.2d Page 88

ENVIRONMENT TESTING SERVICE END POINT

Software

Developer to

Agency Test

• Network

connectivity

• Message

connectivity

• Report testing

for anonymous

interactions

List https://test.sbr.gov.au/services/nowssecurity/list.02.s

ervice

PreFill https://test.sbr.gov.au/services/nowssecurity/prefill.02

.service

PreLodge https://test.sbr.gov.au/services/nowssecurity/prelodg

e.02.service

Lodge https://test.sbr.gov.au/services/nowssecurity/lodge.0

2.service

• Network

connectivity

• Message

connectivity

• Report testing

for authenticated

interactions

List https://test.sbr.gov.au/services/list.02.service

PreFill https://test.sbr.gov.au/services/prefill.02.service

PreLodge https://test.sbr.gov.au/services/prelodge.02.service

Lodge https://test.sbr.gov.au/services/lodge.02.service

SBR Production • Network

connectivity

• Message

connectivity

List https://sbr.gov.au/services/nowssecurity/list.02.servic

e

PreFill https://sbr.gov.au/services/nowssecurity/prefill.02.ser

vice

PreLodge https://sbr.gov.au/services/nowssecurity/prelodge.02.

service

Lodge https://sbr.gov.au/services/nowssecurity/lodge.02.ser

vice

• Network

connectivity

List https://sbr.gov.au/services/list.02.service

 • Message

connectivity

PreFill https://sbr.gov.au/services/prefill.02.service

 PreLodge https://sbr.gov.au/services/prelodge.02.service

 Lodge https://sbr.gov.au/services/lodge.02.service

Table 24: Service End Points Provided by Core Services

https://sbr.gov.au/services/nowssecurity/list.02.service
https://sbr.gov.au/services/nowssecurity/list.02.service
https://sbr.gov.au/services/nowssecurity/prefill.02.service
https://sbr.gov.au/services/nowssecurity/prefill.02.service
https://sbr.gov.au/services/nowssecurity/prelodge.02.service
https://sbr.gov.au/services/nowssecurity/prelodge.02.service

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 89

Test and production end points for the Security Token Service are also provided at the locations

documented in the table below.

ENVIRONMENT SERVICE END POINT

Test STS https://thirdparty.authentication.business.gov.au/R3.0

/vanguard/S007v1.2/service.svc

Production STS https://authentication.business.gov.au/R3.0/vanguard

/S007v1.2/service.svc

Table 25: Service End Points Provided by VANguard

6.2. NETWORK CONNECTIVITY TESTING

SBR Core Services conforms to the industry convention of returning the WSDL for a given service if

an HTTP GET request is performed on the service URL with the string “?wsdl” appended to it. This

applies to any of the end points documented in the above table. The Java version of the WSDL will be

returned (see chapter 7).

For example, requesting the URL “https://sbr.gov.au/services/lodge.02.service?wsdl” in a web browser

will confirm that network connectivity is present between the network on which the browser is

operating and the production Lodge service.

6.3. MESSAGE CONNECTIVITY TESTING

6.3.1. Overview

Having generated syntactically valid SBDM structures, the next phase in development is to add the

SBR Core Services security solution to messages, and confirm that it is working correctly. To assist in

the testing of the security implementation, SBR agencies offer a simple message connectivity test,

called “message.ping”, which is designed as an end-to-end connectivity test from business software,

through core services, to agencies and back. message.ping is not a separate web service; it is

implemented as a particular message type that is supported by each of the four SBR web services

(list, prefill, prelodge, lodge). message.ping is implemented in SBR test and production systems.

• In the SBR Core Services test environment, software developers may use the “message.ping” to

test that they have correctly implemented all SBR Core Services messaging and security

protocols, leaving only the task of creating valid XBRL reports.

• In the SBR Core Services production environment, business users can use “message.ping” as a

diagnostic tool in the event of difficulties with business reports. Software developers are

encouraged to include this connectivity test as a diagnostic capability within their product release.

https://sbr.gov.au/services/lodge.02.service

Version: 2.2d Page 90

Figure 28: Message Ping

6.3.2. Scenario

The "message.ping" re-uses the existing four core services. Therefore it must also be authenticated

like any other interaction. The client must call the Security Token Service (STS) for a SAML token and

construct a security header in accordance with the security specification in this document.

A successful message.ping will result in the return of a “message.pong” that is a copy of the

message.ping with the addition of timestamps in the SBDH.

Any transport level condition will result in the return of a SOAP fault with error codes as defined in the

error handling section of this document. If successful, a MessageEvent element as discussed in

section 4.6 will be returned.

The "message.ping" MUST comply with the existing SBDM schema (which allows any number of

business documents and binary attachments). Therefore a client MAY send zero or more XBRL

instances or binary documents along with their message.ping. Agencies SHOULD copy this content (if

it exists) back in the message.pong response but SHOULD NOT validate or process it in any way.

It should be noted that Core Services checks that the number of business documents and binary

attachments on a request is within the limits implied by the Message Implementation Guides for the

agency/service combination. Thus, for instance, a message.ping with an attachment to an agency

service that does not accept attachments will result in a

SBR.GEN.FAULT.TOOMANYATTACHMENTS SOAP fault being returned.

6.3.3. message.ping

The message.ping envelope contains an instance of a Standard Business Document Message. All

fields in the SBDM should be populated in accordance with the standard request message guidelines

described previously. The table below provides specific details on how to populate a request message

for the message.ping service.

Core Service Platform

ATO

ASIC

SRO
SRO

SRO

Business

Software

System

Monitoring

List

Prefill

PreLodge

Lodge

Soap-env

Soap-hdr

Soap-body

sbdh

MessagePing

Lodge

MessagePing

Lodge

MessagePing

Lodge

MessagePing
SAML

Ping

Ping

Ping

Secure Token

Server

Any doc

MAC

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 91

message.ping can be sent to any SBR participating agency by populating the SBDH Receiver

Identification Details appropriately, as per section 3.3.3.3.

message.ping can be sent to any SBR Core Web Service (list, prefill, prelodge, lodge) by invoking the

service in accordance with the WSDL for the corresponding service assuming that the target agency

supports it.

SBDM ELEMENT ELEMENT VALUE

Message.Type.Text “message.ping”

Table 26: Specific SBDM Values For message.ping

Provision of a sample message.ping envelope is provided in section 7.

6.3.4. message.pong

The message.pong envelope is returned by the target agency in response to a successful

message.ping. The message.pong is essentially an echo of the message.ping with additional

timestamp information in the SBDH. The message.pong MUST follow the standard message

response structure defined previously. The table below provides details on how fields specific to

message.pong will be populated by the Agency.

SBDM ELEMENT ELEMENT VALUE

Message.Type.Text “message.pong”

MessageTimestamp (where GenerationSource.Code = Business Entity) Date/time as provided on

ping request

MessageTimestamp (where GenerationSource.Code = SBRCore) Date/time request was seen

by Core Services

(OPTIONAL)

MessageTimestamp (where GenerationSource.Code =

GovernmentAgency)

Date/time response envelope

was created

BusinessDocuments As provided in the request.

SBDB As provided in the request

Table 27: Specific SBDM Values For message.pong

Provision of a sample message.pong envelopes is provided in section 7.

Version: 2.2d Page 92

6.4. REPORT TESTING

Having determined that SOAP messages can be successfully generated, secured and sent to SBR

Core Services, and that the resulting response can be interpreted, full testing of the desired reports

and business obligations can commence.

SBR Core Services offers a range of artefacts to assist this stage of testing including conformance

suites, test credentials, test cases and test data.

Standard Business Reporting Program SBR Core Web Services Implementation Guide (WIG)

Version: 2.2d Page 93

7. SUPPORTING FILES

7.1. OVERVIEW

The collection of SBR Core Services Web Service Definition Language (WSDL) files, schemas and

message samples are provided in zip files on the SBR website. The WSDL files are provided for

reference purposes and are only required by developers who choose to build their own clients to

interact with SBR Core Services instead of using the SBR SDK.

The WSDL files describing the services provided by Core Services are provided in two variants in

separate zip files. The first variant is targeted at .NET version 3.0 (or higher) that uses the Windows

Communications Framework (WCF), and the second variant is for Java version 1.5 (or higher) based

platforms. If not using the .NET platform, it is suggested that developers use the Java version of the

WSDLs. Each of the four services is described by their own WSDL file which is applicable to

authenticated and anonymous endpoints for the service. Note that it is not possible to generate .NET

clients for the SBR Core Services from the WSDL dynamically fetched using the “?wsld” convention,

proxy classes for .NET must be generated from the provided .NET specific WSDL files.

Zip files are also provided containing message samples, as well as message samples for interactions

with the Security Token Service.

It should be noted that the examples showing the inclusion of attachments will appear different on-the-

wire because of the use of Message Transmission Optimisation Mechanism (MTOM).

The WSDL associated with the STS service is included in the STS message samples zip as a guide,

with it being recommended that the actual WSDL be dynamically fetched from VANguard using the

“?wsdl” convention.

Version: 2.2d Page 94

8. PLATFORM SPECIFICS

8.1. OVERVIEW

The following information is provided for developers who choose to build their own clients to interact

with the SBR Core Services instead of using the SBR Core Services SDK.

8.2. .NET

.NET offers two data serialisers, the XML serialiser which has been offered since .NET 2.0, and the

Data Contracts Serialiser, which has been offered since the introduction of WCF.

It is recommended, if intending to interact with ASIC, that the XML Serialiser be used in order to

ensure the correct operation of MTOM, particularly in relation to the provision of the

xmime:contentType attribute.

If not planning to implement interactions that require binary attachments, the SBR Core web service

definitions will work with either serialiser. If using the Data Contracts serialiser, however, it is

recommended that the svcutil utility be used to generate client code. The /importXmlTypes switch also

needs to be used, in order that appropriate code be generated to handle the structures used to hold

business document instances.

